

OASIS4I DLL Manual Version 3.1.3 PAGE 1

OASIS Automation Controller
Software Library

Reference Manual

Version 3.2.1

Objective Imaging Ltd.

PLEASE NOTE: DUE TO A POLICY OF CONTINUOUS DEVELOPMENT, THE
INFORMATION PRESENTED IN THIS DOCUMENT MAY BE SUBJECT TO
CHANGE.

Please contact Objective Imaging Ltd. for updated information.

Objective Imaging Ltd.
www.objectiveimaging.com
email: info@objectiveimaging.com

Copyright © 2000-2010 Objective Imaging Ltd. All rights reserved.

 Version 3.1.3 OASIS4I DLL Manual PAGE 2

Table of Contents
GETTING STARTED ..9

SYSTEM REQUIREMENTS..9
INSTALLATION..10
FILES IN THE OASIS LIBRARY DEVELOPER KIT ...10

USING THE OASIS SOFTWARE...12

MOVING AXES AND COMPONENTS..14
Positional Units and Axis Calibration..14
The Coordinate System..14
Moving a Single Axis...15
Waiting for Movement Completion...15
Moving the XY Stage and Focus...16
Acceleration Tables...21
Cruising Speed...23
Encoder Support..24

SAVING SETTINGS...26
Saving and Loading Settings...26
Saving and Loading Positions ..27

RETURN VALUES..27

ADVANCED TOPICS..29

USING MULTIPLE OASIS CONTROLLERS..29
Counting the Number of Installed OASIS Controllers...29
Routing Commands to a Controller..29
Using General Axis Commands with Multiple Controllers...30
Special Considerations When Using Multiple Controllers ...31

GENERAL PURPOSE I/O..31

FUNCTION DESCRIPTIONS..33

HARDWARE CONTROL ...34
OI_Close ..35
OI_CloseComponent...35
OI_Configure...36
OI_CountCards ...37
OI_EmergencyStopAll...38
OI_EnableMotorPower...38
OI_EnableMotorPowerEx ..38
OI_GetAFFitted...39
OI_GetAHMDelay...39
OI_GetAutoFocusHWMode ...40
OI_GetCardAxisCount..40
OI_GetCardType...41
OI_GetComponentStatus ..41
OI_GetConfiguration ..43
OI_GetDefaultAbortKeys..44
OI_GetDefaultWaitCursorEnabled..44
OI_GetDriverOpen..45
OI_GetFlashCheckSum...45
OI_GetHardwareMode...46
OI_GetMultiAxisMode..46
OI_GetSelectedCard ...47

http://www.objectiveimaging.com/�

OASIS4I DLL Manual Version 3.1.3 PAGE 3

OI_GetTotalAxisCount..47
OI_GetUseCount...47
OI_IsModuleFitted ..48
OI_Open...49
OI_OpenComponent ...49
OI_ReadCardStatus ..50
OI_ReadPCBName ...50
OI_ReadPCBStatus ...51
OI_ReadPCBTemperature..52
OI_ReadPCBType...53
OI_ResetHardware..53
OI_SelectCard ...54
OI_SetAHMDelay..54
OI_SetAutoFocusHWMode ..55
OI_SetDefaultAbortKeys...55
OI_SetDefaultWaitCursorEnabled...56
OI_SetHardwareMode..56
OI_SetMultiAxisMode...57

VERSION INFORMATION...58
OI_GetDriverVersion..58
OI_ReadPCBID...59
OI_ReadPCBVersion ..59
OI_ReadSerialNum ...60

GENERAL, SINGLE AXIS CONTROL..60
OI_ClearAxisUserLimits...61
OI_DriveAxisContinuous..61
OI_FlashReadAxisPitch..62
OI_GetAxisBacklash ...62
OI_GetAxisCruise..63
OI_GetAxisInitMethod ..64
OI_GetAxisMaxMove..64
OI_GetAxisPitch..65
OI_GetAxisRamp...65
OI_GetAxisRange..66
OI_GetAxisSense ...67
OI_GetAxisStepSize...67
OI_GetAxisStepsPerRev..68
OI_GetAxisTravel..68
OI_GetAxisUserLimits ..69
OI_HaltAxis ...69
OI_LookupAxisSpeed ..70
OI_MoveAxis ...70
OI_ReadAxis..71
OI_ReadAxisAtLimit..72
OI_ReadAxisMoving ...72
OI_ReadAxisRampValue...73
OI_ReadAxisStatus..73
OI_SetAxisBacklash ..74
OI_SetAxisCruise...75
OI_SetAxisEncoderEnabled..75
OI_SetAxisInitMethod ...76
OI_SetAxisPitch...77
OI_SetAxisRamp..77
OI_SetAxisSense ..78
OI_SetAxisStepSize..79
OI_SetAxisToDefaults ...79
OI_SetAxisTravel...80
OI_SetAxisUserLimits ...81

 Version 3.1.3 OASIS4I DLL Manual PAGE 4

OI_StepAxis ...81
OI_StepAxisAbs ...82
OI_WaitForAxisStopped ...83

SIMULTANEOUS THREE AXIS CONTROL..83
OI_DriveContinuousXYZ..83
OI_HaltAllAxes..84
OI_MoveToXYZ...84
OI_MoveToXYZ_Auto...85
OI_ReadMaxMoveXYZ...86
OI_ReadXYZ..87
OI_SetPitchFromFlashXYZ..87
OI_SetPositionXYZ..88
OI_WaitForStoppedXYZ...88

XY STAGE CONTROL ...89
OI_ClearUserLimitsXY...89
OI_DriveContinuousXY ..90
OI_GetBacklashXY..91
OI_GetCruiseXY..91
OI_GetDriveSenseXY..92
OI_GetFullTravelXY...92
OI_GetPitchXY..93
OI_GetRampXY...93
OI_GetSpeedXY...94
OI_GetUserLimitGuardDistanceXY ..94
OI_GetUserLimitsXY ..95
OI_HaltXY ...95
OI_InitializeXY ..96
OI_LookupSpeedXY ..96
OI_MoveToXY...97
OI_MoveToXY_Abs...98
OI_MoveToXY_Auto ...98
OI_ReadLimitAlarmsXY ...99
OI_ReadStatusXY..99
OI_ReadXY ..100
OI_ReadXY_Abs..101
OI_SelectSpeedXY...101
OI_SetCruiseXY...102
OI_SetDriveSenseXY...103
OI_SetOriginXY...103
OI_SetPitchXY...104
OI_SetPositionXY..104
OI_SetRampXY..105
OI_SetUserLimitGuardDistanceXY ...106
OI_SetUserLimitsXY ...107
OI_StepX..107
OI_StepXY..108
OI_StepY ..108
OI_WaitForStoppedXY ...109

Z / FOCUS CONTROL...109
OI_ClearUserLimitsZ..109
OI_CloseMouseWheelForFocus ..110
OI_DriveContinuousZ...110
OI_GetBacklashZ ..111
OI_GetCruiseZ ..111
OI_GetDriveSenseZ ..112
OI_GetMouseWheelPars ..112
OI_GetMouseWheelZ..113
OI_GetRampZ..113

OASIS4I DLL Manual Version 3.1.3 PAGE 5

OI_GetSpeedZ ...114
OI_GetUserLimitsZ...114
OI_HaltZ..114
OI_InitializeZ...115
OI_InitializeZLimits...115
OI_LookupSpeedZ...116
OI_MoveToZ..116
OI_MoveToZ_Abs ...117
OI_OpenMouseWheelForFocus...117
OI_ReadLimitAlarmsZ..118
OI_ReadRangeZ..119
OI_ReadStatusZ...119
OI_ReadSyncZ...120
OI_ReadZ...120
OI_ReadZ_Abs ..121
OI_RockZ...121
OI_SelectSpeedZ..122
OI_SetCruiseZ ...123
OI_SetDriveSenseZ ...123
OI_SetMouseWheelPars ...124
OI_SetMouseWheelZ...124
OI_SetOriginZ ...125
OI_SetPitchZ..125
OI_SetPositionZ...126
OI_SetRampZ...126
OI_SetUserLimitsZ..127
OI_StepZ ..128
OI_WaitForStoppedZ..128

F-AXIS (4TH
 AXIS) CONTROL...129

OI_ClearUserLimitsF ...129
OI_GetCruiseF..129
OI_GetDriveSenseF ..129
OI_GetRampF ...130
OI_GetSpeedF ...130
OI_GetUserLimitsF...131
OI_HaltF..131
OI_InitializeF...132
OI_InitializeFRange..132
OI_LookupSpeedF...133
OI_MoveToF ...133
OI_ReadF...134
OI_ReadLimitAlarmsF..134
OI_ReadRangeF..135
OI_ReadStatusF ..135
OI_SelectSpeedF ...136
OI_SetCruiseF...137
OI_SetDriveSenseF ...138
OI_SetOriginF...138
OI_SetPitchF ...139
OI_SetPositionF ..139
OI_SetRampF ..140
OI_SetUserLimitsF..140
OI_StepF..141
OI_WaitForStoppedF..142

T-AXIS (5TH
 AXIS) AND S-AXIS (6TH

 AXIS) CONTROL...142
OI_ClearUserLimitsT..142
OI_DriveContinuousT...143
OI_GetCruiseT ..143

 Version 3.1.3 OASIS4I DLL Manual PAGE 6

OI_GetDriveSenseT ..144
OI_GetRampT..144
OI_GetSpeedT ...145
OI_GetUserLimitsT...145
OI_HaltT..146
OI_InitializeT...146
OI_InitializeTRange ..147
OI_LookupSpeedT...147
OI_MoveToT..148
OI_ReadLimitAlarmsT..149
OI_ReadRangeT..149
OI_ReadStatusT...150
OI_ReadT...151
OI_SelectSpeedT..151
OI_SetCruiseT ...152
OI_SetDriveSenseT ...153
OI_SetOriginT ...153
OI_SetPitchT..154
OI_SetPositionT...154
OI_SetRampT...155
OI_SetUserLimitsT..156
OI_StepT ..156
OI_WaitForStoppedT..157

ENCODERS AND CLOSED-LOOP OPERATION..157
OI_GetAxisEncoderEnabled...158
OI_GetAxisEncoderFitted...158
OI_GetAxisEncoderStepSize...159
OI_GetEncoderClosedLoopResponseXYZ...159
OI_GetEncoderEnabledXY...160
OI_GetEncoderEnabledZ ...160
OI_ReadEncoderModule ..161
OI_SetEncoderClosedLoopResponseXYZ..161
OI_SetEncoderEnabledXY..162
OI_SetEncoderEnabledZ ..163
OI_SetEncoderModule..164

AUTOMATIC FOCUS..166
OI_AutoFocus..166
OI_AutoFocus_Fine..167
OI_AutoFocus_Step ..168
OI_AutoFocusEx ...168
OI_GetAutoFocus..169
OI_GetAutoFocusEx ...169
OI_GetAutoFocusThreshold...170
OI_GetFineFocusSamples..170
OI_ReadFocusProfile..171
OI_ReadFocusScore ...172
OI_ReadFocusScoreEx...172
OI_RequestAutoFocusStatus ..172
OI_SetAutoFocus...173
OI_SetAutoFocusEx ..174
OI_SetAutoFocusThreshold..174
OI_SetFineFocusSamples...175
OI_WaitForAutoFocus..175

PREDICTIVE FOCUS FUNCTIONS...176
OI_GetAutoPredictiveZ...176
OI_GetCoincDomain ..177
OI_GetMultiPredictiveZ ...178
OI_GetPredictiveFlag...178

OASIS4I DLL Manual Version 3.1.3 PAGE 7

OI_GetPredictiveZ ..179
OI_GetPredictiveZDomains ...180
OI_GetPredictiveZOffset...181
OI_InvalidatePredictiveZ..181
OI_SetAutoPredictiveZ..182
OI_SetMultiPredictiveZ ..182
OI_SetPredictiveFlag..183
OI_SetPredictiveZ ...184
OI_SetPredictiveZOffset..185
OI_UpdatePredictiveZ ..185

VIDEO CAMERA INTERFACE FUNCTIONS ..186
OI_GetVideoWindow ..187
OI_IsVideoDetected ..188
OI_ReadVideoData...188
OI_ReadVideoResults..189
OI_ReadVideoResultsEx ...190
OI_ReadVideoResultsXY...191
OI_ReadVideoResultsXYZF..192
OI_ReadVideoResultsZ ...193
OI_SetVideoSettings..194
OI_SetVideoWindow ...195

FILTER CHANGER FUNCTIONS ...196
OI_ClearFilterHomeInfo ..197
OI_DeleteFilter..198
OI_GetFilterChanger..198
OI_GetFilterChangerCount..199
OI_GetFilterCount ..199
OI_GetFilterDescription...200
OI_GetFilterHomeOffset ..200
OI_GetFilterName...201
OI_GetFilterOffset...201
OI_GetFilterPosition...202
OI_GetFilterTimeout...202
OI_GetAvailableShutterCount..202
OI_GetShutter..203
OI_GetShutterEx ...203
OI_GetShutterMulti...205
OI_InitFilterChanger ..205
OI_MoveToFilter...206
OI_ReadFilterChangerInfo...207
OI_ReadFilterHomeInfo ...208
OI_SelectFilterChanger..208
OI_SetFilterCount ...209
OI_SetFilterDescription..209
OI_SetFilterHomeOffset ...210
OI_SetFilterLocation...210
OI_SetFilterName..211
OI_SetFilterOffset ...211
OI_SetFilterTimeout..211
OI_SetShutter...212
OI_SetShutterEx ..213
OI_SetShutterMulti..214
OI_WaitForStoppedFilter...215

HARDWARE JOYSTICK AND TRACKBALL FUNCTIONS ..215
OI_ClearTrackballStatus ..215
OI_GetJoystickEnabled...216
OI_GetTrackballControl...216
OI_GetTrackballEnabled..217

 Version 3.1.3 OASIS4I DLL Manual PAGE 8

OI_ReadTrackballStatus...217
OI_SetJoystickEnabled..219
OI_SetTrackballControl..219
OI_SetTrackballEnabled...220

TIMEOUTS ...221
OI_GetAutoFocusTimeout..221
OI_GetMoveTimeout...222
OI_GetVideoTimeout ..222
OI_SetAutoFocusTimeout...223
OI_SetMoveTimeout..223
OI_SetVideoTimeout ...223

FILE I/O AND SETTINGS..224
OI_LoadPositions..224
OI_LoadSettings ..225
OI_LoadSettingsEx..225
OI_SavePositions ..226
OI_SaveSettings...226
OI_SaveSettingsEx ..227

ERROR HANDLING..227
OI_GetLastError ...227
OI_EnableMsgReportDlg ...228

MICRONS / STEP CONVERSION...229
OI_MicronsToAbsoluteX ..229
OI_MicronsToAbsoluteY...229
OI_MicronsToAbsoluteZ...229
OI_MicronsToAbsoluteF ..229
OI_MicronsToStepsX..230
OI_MicronsToStepsY ..230
OI_MicronsToStepsZ ..230
OI_MicronsToStepsF..230
OI_StepsToMicronsX..231
OI_StepsToMicronsY ..231
OI_StepsToMicronsZ ..231
OI_StepsToMicronsF..231

GENERAL PURPOSE I/O..231
OI_ReadInputPorts ...232
OI_ReadIO...233
OI_WriteIO..234

OASIS4I DLL Manual Version 3.1.3 PAGE 9

Getting Started
The OASIS automation library is a Windows Dynamic Link Library providing full control and
access to the Objective Imaging OASIS range of microscope automation controllers. An
OASIS controller provides independent, microstepping control of 4 axes of movement as well
as optional capabilities via various plug-in daughter modules for high-performance applications
in automated microscopy and digital image analysis.

The OASIS DLL simplifies the task of automation control by:

 Managing critical set-up and maintenance tasks of the OASIS controller

 Providing easy-to-use functions for positional control by employing a real-world
co-ordinate system

 Organisation of functions according to application-specific tasks, such as stage
control and automatic focus

The OASIS DLL manages fundamental controller interface tasks such as initialisation of the
device driver, reads and writes to hardware control registers, and exchange of data with the
on-board OASIS DSP.

Co-ordinate positions for each axis are maintained in microns, matching physical distances.
The conversion from microns to actual controller micro- or half-steps is handled by the OASIS
DLL and is transparent to the user.

The facilities found in the OASIS DLL are organised generally according to those
characteristics of the microscope that may be automated:

 Motorised XY Stage

 Motorised Focus (Z-Axis)

 Automatic Focussing via Video Signal

 Extra Device Control (filter wheels, etc.)

In addition to these functional groups, the OASIS DLL provides functions for general hardware
set-up and inquiry and general-purpose control of each axis separately.

System Requirements
To use the OASIS DLL, you will need the following:

 A Pentium or better computer running Windows 2000, Windows XP, or 32-bit Windows
Vista

 Version 3.1.3 OASIS4I DLL Manual PAGE 10

 An OASIS-4i or OASIS-blue Controller installed into an available PCI slot

 Microsoft® Visual C++ 6.0 or higher

 The OASIS Installation CD-ROM

Installation
The OASIS DLL Developer Kit is installed from CD-ROM. To install the Kit:

1. Insert the OASIS Installation CD into your system’s CD drive.

2. Using Windows Explorer, navigate to the “SDK” directory on the CD.

3. Start the “SETUP.EXE” application in the SDK directory on the CD.

4. Follow the instructions on the screen to specify where you want the files for the OASIS
DLL Developer Kit copied on your system.

Note that to use the OASIS hardware, you need to have successfully installed the OASIS
controller hardware. See the documentation for your OASIS hardware for more information on
installing the controller board.

Also note that the option to “Install OASIS Tools” from the OASIS CD’s main menu will install
the OASIS SDK onto your system.

Files in the OASIS Library Developer Kit
The following files are copied to your system as part of the OASIS DLL Developer Kit.

File Description

OASIS.EXE Application to setup, test and demonstrate the facilities
of the OASIS controller.

OIFLASHCFG.EXE Application to setup the FLASH memory of the OASIS
controller.

OASIS_DLL_MANUAL.PDF The OASIS DLL Developer Kit manual, in Adobe’s PDF
format.

OASIS4I.H Header file that prototypes all the OASIS DLL control
functions.

OI_CONST.H Header file defining various constant values used by the
OASIS DLL.

OASIS4I.LIB Import library file for linking your application to the

OASIS4I DLL Manual Version 3.1.3 PAGE 11

File Description

OASIS DLL functions.

example\OASISTST.DSP Project fie for the OASISTST MFC example application.

example\OASISTST.CPP Source file for the OASISTST MFC example
application.

example\OASISTST.H Primary header file for the OASISTST MFC example
application.

example\OASISTST.RC Resource template for the OASISTST MFC example
application.

example\RESOURCES.H The resources header file defining the IDs used by the
OASISTST MFC example application.

example\StdAfx.h Standard system includes header for the OASISTST
MFC example application.

example\StdAfx.cpp Source file for standard precompiled headers.

example\Release\OASISTST.EXE The OASISTST MFC example application executable.

 Version 3.1.3 OASIS4I DLL Manual PAGE 12

Using the OASIS Software
Using the OASIS DLL in your Visual C++ project is relatively simple. Follow these steps:

1. Include the OASIS4I.H header file in the source files where you need to make calls to the
OASIS automation controller.

2. Add the OASIS4I.LIB import library as an additional library in your projects Linker settings.

3. Ensure that the application calls the OI_SetHardwareMode and OI_Open functions
before you make any calls that access the OASIS controller.

4. Ensure that you call the OI_Close function when your application is finished using the
OASIS controller.

Figure 1 shows a basic example of a Win32 application created with Microsoft Visual C++
using the Win32 application wizard. The code to open the OASIS controller has been added.
In this example, the stage is initialised once the controller is opened.

OASIS4I DLL Manual Version 3.1.3 PAGE 13

#include "stdafx.h"
#include "oasis4i.h"

int APIENTRY WinMain(HINSTANCE hInstance,
 HINSTANCE hPrevInstance,
 LPSTR lpCmdLine,
 int nCmdShow)
{
 // Set the hardware mode to use the controller
 OI_SetHardwareMode(OI_OASIS);

 // Open the controller
 int iret = OI_Open();

 // if the open failed, exit
 if(OIFAILED(iret))
 {
 MessageBox(NULL,
 "Failed to open driver",
 "Error",
 MB_OK);
 return 0;
 }

 // Now we can do what we like...

 // For instance, initialize the stage
 iret = MessageBox(NULL,
 "Make sure everything is clear of the stage travel!",
 "Initialize stage?",
 MB_OKCANCEL | MB_ICONWARNING);

 if(iret == IDOK)
 OI_InitializeXY();

 // We're finished, so close things down
 OI_Close();
 return 0;
}

Figure 1. Basic example using the OASIS DLL.

Though these simple steps allow you to start using the OASIS hardware, there are a number of
important considerations relating to general automation techniques, as well as the details of
how the OASIS DLL implements these. The following sections highlight the details relating to
configuring the controller and performing movement operations.

 Version 3.1.3 OASIS4I DLL Manual PAGE 14

Moving Axes and Components
The most fundamental application of the OASIS controller is of course to move one or more
axes by driving motors. A number of factors arise when considering this movement, including:

 The calibration of the axis, where real-word distances are converted to basic motor steps

 The way the axis is accelerated and decelerated

 The cruising speed that defines the desired maximum rate of travel

 The assistance of any positional feedback mechanisms during the move

 The method by which an application can determine the status of the movement

Each of these factors must be considered in order to achieve the best performance of the
motion control system and are described below.

Positional Units and Axis Calibration

The OASIS DLL manages the conversion of position values—i.e. based on microns—into
internal microstep values using conversion factors that can be set up in the DLL.

All positions are specified in microns, thereby simplifying overall operation by allowing
movements and readouts to be in the actual physical dimensions of the microscope stage and
focus mechanisms.

Typically for XY stages, the lead screw pitch is used to determine the actual distance of travel
for a given microstep. The OI_SetPitchXY function may be used to indicate the actual lead
screw pitch of a given stage, at which time the OASIS DLL will calculate the corresponding
microstep resolution.

For the Focus and F-Axis, OI_SetAxisStepSize may be used to indicate the actual distance of
travel for each microstep. Also, these axes have complementary OI_SetPitchZ and
OI_SetPitchF functions. For instance, you may wish to all OI_SetPitchZ with a pitch value of
0.1 mm, i.e., the typical 100 microns per fine focus revolution.

The Coordinate System

As mentioned above, the coordinate system for each axis is defined in units of microns. Each
axis has a range of travel, which is defined by both negative and positive software limit values.
In cases where hard limit switches are fitted, as with a motorised XY stage, an automatic
initialisation may be performed to search for these limit switches in X and Y.

Figure 2 gives a graphical example of the physical situation. A motor is connected a lead
screw which is used to convert the rotational motion of the motor into a translation of a device
such as a XY stage. The physical, hard limit switches are found near the end of the physical
limits of travel. Within that range are the software limits, defining the range in which the
controller allows movement. An axis origin defines the 0 position value, to which all other

OASIS4I DLL Manual Version 3.1.3 PAGE 15

positions are referenced. In reality, the range of travel is broken down into a larger number of
very fine steps, corresponding to the microstepping resolution of the motor controller.

Physical Limit
Switches

Motor
Drive

Negative
Software Limit

= valid range of travel

Positive
Software Limit

Origin,
X=0

+ve dir -ve dir

Figure 2. Physical and software limits, with range of travel.

Moving a Single Axis

Once the axis calibration and range of motion are defined, you may go about moving the axis.
For a general-purpose move, you may use the OI_MoveAxis function. For instance, the
function call:

 OI_MoveAxis(OI_ZAXIS, 10.5, 1)

moves the Z-axis to an absolute position of 10.5 microns. The last parameter, set to 1 in this
example, tells the function to wait until the move is complete before returning.

You may also wish to move a relative distance from the current position, for which you may use
the OI_StepAxis function. For instance, the function call:

 OI_StepAxis(OI_XAXIS, -600, 0)

moves the X-axis 600 microns in the negative direction. The 0 passed as the last parameter
tells the function to return immediately, without waiting until the move is complete.

Waiting for Movement Completion

Each function that moves an axis contains a parameter nWait that indicates if the function
should return immediately or should wait until the desired position is reached before returning.

Specifying an nWait value of 0 causes the function to return immediately (i.e., as soon as the
move command is read and acknowledged by the controller), without waiting for the move to
complete.

Specifying a non-zero nWait value will cause the function to poll the affected axes’ status until
the move is complete before returning.

 Version 3.1.3 OASIS4I DLL Manual PAGE 16

Note that at anytime during the wait for the move to complete, the user may press either the
ESCAPE or CTRL-C keys to abort the movement. If either of these occurs, all axes are
immediately halted (using the deceleration ramps so that position integrity is maintained) and
the function will return with an OI_ABORT error code.

If you have called a movement function without waiting, but at some later time need to wait for
the axis to stop, you may use the “OI_WaitForStopped” functions. These functions are:

OI_WaitForStoppedXYZ(int xstop, int ystop, int zstop)
OI_WaitForStoppedXY()
OI_WaitForStoppedZ()
OI_WaitForStoppedF()

and each deal with a given axis or set of axes.

Alternatively, you may use one of the “OI_ReadStatus” functions, such as
OI_ReadAxisStatus, OI_ReadStatusXY, etc. to read the status of a given axis and check the
S_MOVING status bit to see if the axis is currently in motion.

Moving the XY Stage and Focus

In many cases, the OASIS controller is used in a 3-axis scenario corresponding the XY stage
and Z focus drive of a microscope. The OASIS DLL offers a set of functions organised around
these logical components, i.e., “XY” functions for two-axis operation of the stage, “Z” functions
for the focus, and “XYZ” functions that deal with all three axes simultaneously.

XY Stage Initialisation

To automatically initialise the stage, call:

 OI_InitializeXY()

which causes the automatic limit search to begin. The function first moves in the negative
direction until the negative limits are detected for both axes. Then the position limits are found
by a move in the positive direction. Once both limits are found, the stage moves to the centre
of the range of travel. The negative physical limit is set to a position of XY=[0,0], and the
software limits are defined to be just inside the physical limits (to prevent loss of position during
open loop movements if the axis were driven into the hard limit).

Caution: Please ensure that the full range of stage travel is free of all optical and
mechanical obstructions—such as objective lenses and the condenser optical
system—prior to calling OI_InitializeXY!

You may manually define the software limits of the stage by calling:

OI_SetUserLimitsXY(double dXMin, double dXMax, double dYMin, double dYMax)

where dXMin and dXMax define the negative and positive soft limits for the X axis, and dYMin
and dYMax define the corresponding Y-axis values.

To clear the software limits, call:

OI_ClearUserLimitsXY

OASIS4I DLL Manual Version 3.1.3 PAGE 17

This is disable the software limits, i.e., only the physical limit switches will be used to limit travel.

You may also redefine the origin location with a call to either:

 OI_SetOriginXY()

or

 OI_SetPositionXY(double XPos, double YPos)

The OI_SetOriginXY function defines the current position as the origin, i.e., XY=[0,0]. The
OI_SetPosition function defines the current position to be the specified XY=[XPos, YPos], and
the coordinate system origin is adjusted to accommodate the new position. In each case the
software limits are modified in order to maintain the same physical locations.

XY Stage Movement

Once you’ve established the range of stage travel, you may begin moving the stage around.
For instance, function call:

 OI_MoveToXY(1000, 5000, 1)

moves to an absolute XY position of X=1000, Y=5000. The last parameter of 1 indicates the
function should wait until the move is completed before returning.

To move the stage relative distance from the current location, you can call:

OI_StepX(double dXDistance, int nWait)
OI_StepY(double dYDistance, int nWait)

or

OI_StepXY(double dXDistance, double dYDistance, int Wait)

The first two functions step either the X or the Y axis, respectively, while the third variation
steps both the X and Y axis simultaneously.

Many automated microscopy applications that use motorised scanning require 3-axis control
for XY stage and focus manipulation. You may perform simultaneous 3-axis moves using calls
such as:

 OI_MoveToXYZ(1000, 1500, 10, 0)

which moves to an XYZ location of X=1000, Y=1500, and Z=10. The 0 passed in the last
parameter indicates the function should return immediately.

Figure 3 shows a very simple rectangular raster scanning example. In the example the current
stage position is read, and a 10x10 field scan is made from that location, using a step size for
both X and Y of 500 microns.

 Version 3.1.3 OASIS4I DLL Manual PAGE 18

void ScanRectangle(void)
{
 // Setup a 10x10 field scan
 // fields are 500 microns apart
 int nXFields = 10;
 int nYFields = 10;
 double dXStep = 500;
 double dYStep = 500;

 // Read the current XY position
 // as the starting point
 double dXStart, dYStart;
 double dXPos, dYPos;
 OI_ReadXY(&dXStart, &dYStart);

// Now do the scanning
 for(int nY=0; nY<nYFields; nY++)
 {
 // Calc Y position of field
 dYPos = dYStart + nY*dYStep;
 for(int nX=0; nX<nXFields; nX++)
 {
 // Calc X position of field
 dXPos = dXStart + nX*dXStep;

 // Move to the field
 OI_MoveToXY(dXPos, dYPos, 1);
 }
 }

// Finally, move back to start position
OI_MoveToXY(dXStart, dYStart, 0);

}

Figure 3. Simple XY rectangular scanning example.

You may imagine variations on this scanning theme were every other row is scanned
retrograde for a serpentine movement, etc.

Driving the Stage Continuously

In some instances you may wish to set the stage moving at a given direction, without a
particular target destination. One example that uses this behaviour is a software joystick,
where the stage should be driven in the direction of joystick deflection, until, say, the user
releases a mouse button.

To drive the stage continuously, use a call to

OI_DriveContinuousXY(int nXSpeed, int nYSpeed)

where nXSpeed and nYSpeed give the speed, in half-steps per second, at which to drive the X
and Y axes, respectively. These speed values range from –4096 half-steps / sec to +4096
half-steps / sec, where the value’s sign indicates the direction of travel.

OASIS4I DLL Manual Version 3.1.3 PAGE 19

To stop the moving stage, call

OI_HaltXY()

which will stop the X and Y axes if they are moving.

Z Focus Initialisation

Like the XY stage functions, a number of functions allow control of the Z focus drive. These
functions have a “Z” suffix, such as:

OI_SetOriginZ()

which sets the current position of the Z axis to be the origin, i.e., Z=0.

Like all axes, the Z focus maintains negative and positive software limits that define the range
of travel. However, focus drives normally do not contain limit switches, and therefore automatic
initialisation is not possible. To initialise the Z focus to a known position and range, call:

OI_InitializeZ(double ZRangeAbove, double ZRangeBelow)

The OI_InitializeZ function does the following:

1. Sets the current position to the origin (Z=0);

2. Sets the positive software limit a distance of ZRangeAbove microns above the current
position;

3. Sets the negative software limit a distance of ZRangeBelow microns below the current
position.

The call should be made when the specimen is nominally in focus, and once initialised, the Z
focus coordinate system and range of travel will be defined as is shown in Figure 4.

Range
Below

Range
Above

Focus
Origin
(Z=0)

Specimen

Figure 4. Focus Initialisation.

This configuration, where the focus origin is considered the nominal in-focus position and
specific ranges of travel are defined above and below that, works well for microscopy
applications, where consideration must be given to prevent large movements that may damage
the specimen or the optical system.

 Version 3.1.3 OASIS4I DLL Manual PAGE 20

For instance, on a typical microscope, movement of the focus mechanism moves the entire
stage and condenser sub-system together, towards or away from the objective lens. In such a
configuration, larger moves in the negative direction, away from the objective, are possible,
while movements towards the objective, where the small working distances of the objective
lens are in effect, lead to a much smaller range of safe travel.

In order to further protect against large movements that may damage the optical system
components of a microscope, the OASIS controller also uses a “Maximum Move” value, which
is a microstep value the DSP uses to reject larger move requests. The actual Maximum Move
value is set in the Flash memory, but you can read the current value for a given axis by calling:

OI_GetAxisMaxMove(int AxisID, LPDWORD lpdwValue)

This method helps prevent physical collisions when for instance in a situation where the
software limits have not been properly set and a very large move has been called. For
example, if the Z axis has not been initialised and is in an unknown state. A call to move to an
absolute position may in such a case result in a very large movement, potentially causing
damage to the specimen or the optical system. If such a move is beyond the Maximum Move
value, the DSP refuses the move, i.e., the axis is not driven at all.

Z Focus Movement

To move the Z-axis to an absolute position, call:

 OI_MoveToZ(double Z, int nWait)

where Z gives the Z-axis position and nWait tells the function whether to wait until the position
is achieved before returning. You can do a relative move with:

 OI_StepZ(double ZDistance, int nWait)

For example, Figure 5 shows an example user function that steps the focus through a given
range. The OI_StepZ function is used first to move to one end of the range, then the specified
number of steps is taken through to the end of the range. At each Z position, the application
could do some processing, such as acquiring successive Z images to create a focus stack for
an extended focus calculation.

OASIS4I DLL Manual Version 3.1.3 PAGE 21

void StepFocus(double dRange, int nSteps)
{

// get the size of each step
double dStepSize = dRange / nSteps;

// Move half range from current pos
OI_StepZ(-dRange/2, 1);

// Now step through range
for(int i=0; i<nSteps; i++)
{

// Could do something here
// e.g., acquire an image

// now step to next position
OI_StepZ(dStepSize, 1);

}
}

Figure 5. OI_StepZ example.

Acceleration Tables

Typically, movement is performed by accelerating a stationary axis to some top speed, then
decelerating as the destination position is approached so that the axis is stopped at the target
position. Consider for instance Figure 6.

 Version 3.1.3 OASIS4I DLL Manual PAGE 22

Distance

V
el

o
ci

ty

Cruise
Speed

Figure 6. Linear acceleration ramp profile

Figure 6 shows a linear acceleration profile. Note the velocity increases linearly until a given
cruising speed is reached. Once the target destination approaches, the axis is decelerated in a
similar fashion in order to stop at the desired location.

The OASIS controller uses four pre-defined ramp profile lookup tables to define acceleration
and deceleration. Each table consists of 512 values indicating a timer value and step size. By
default, these tables are configured for Slow, Normal, Fast, and User-defined acceleration
profiles, and are normally referred to using these names.

Figure 7 shows an example ramp table, showing a sequence of microsecond timer intervals
and step sizes. The acceleration is performed by running through successive indices in the
table after stepping the indicated steps size and waiting the corresponding timer interval.

In the Figure 7 example, note the transition from 1 microstep to 2 microsteps that occurs at
index 3, and the corresponding increase in the timer interval to compensate. This is required in
order to keep the timer interval above a 200 microsecond value, which allows for simultaneous
servicing of up to four axes by the DSP.

Index Timer Interval
(microseconds)

Step Size (microsteps)

0 244 1

1 227 1

2 212 1

3 397 2

4 374 2

5 354 2

6 335 2

OASIS4I DLL Manual Version 3.1.3 PAGE 23

Figure 7. Example showing the first 7 values of a linear ramp table.

Selecting the Table

Each axis uses one of the four pre-defined tables for its acceleration profile. To set which of
the four acceleration tables to use for a given axis, use the OI_SetAxisRamp function, for
instance, the following function call:

 OI_SetAxisRamp(OI_ZAXIS, OI_RAMP_SLOW)

sets the Z-axis ramp to use the slow table. You may also use the ramp definition for each
component, such as OI_SetRampXY or OI_SetRampZ.

The default ramp table for each axis is stored in the Flash memory, and may be modified using
the Flash configuration application.

Defining the Table

Each of the four ramp tables are stored in the Flash memory of the OASIS controller. The
Flash configuration application allows you to calculate new linear and S-curve tables, or specify
you own individual table values, and save them to any of these locations. See the
documentation for the Flash memory configuration application for more information on defining
your own ramp tables.

Cruising Speed

The cruising speed defines the maximum speed at which a given axis will be driven. The
OASIS controller allows you to specify the desired cruise speed separately for each axis. The
cruise speed is a value between 0 and 511, which corresponds to the desired maximum index
to ramp to in the acceleration ramp table.

For example, a cruise speed of 300 means that the controller will ramp up to index 300 in the
acceleration ramp table, then continue to drive at the rate found at index 300 until deceleration
is required near the final destination.

To set the cruise speed for a given, axis call:

 OI_SetAxisCruise(int AxisID, int nCruise)

For instance, the following call:

 OI_SetAxisCruise(OI_ZAXIS, 200)

sets the Z axis cruise speed to 200.

You may also set the cruise speed using the logical components such as the XY stage and Z
focus functions:

OI_SetCruiseXY(int nXCruise, int nYCruise)

OI_SetCruiseZ(int nZCruise)

 Version 3.1.3 OASIS4I DLL Manual PAGE 24

The default cruise speed for each axis is stored in the Flash memory, and may be modified
using the Flash configuration application.

Encoder Support

Encoders are position-sensing devices that provide feedback that indicates movement of a
sensor. Encoders may be fitted to a given axes in order to provide an independent feedback
mechanism which may be used to sense manual movements of the axis (for instance if the
stage hardware permits turning by hand) and also may be used during movements to ensure
accuracy of positioning.

The OASIS controller accepts encoder inputs and may be configured to use these to perform
such closed-loop operations. The setup of the encoder parameters is accomplished in the
Flash memory configuration application. Please refer to that application for further details on
properly configuring the controller for closed-loop operation using encoders.

You may read if an encoder has been configured for an axis with a call to:

 OI_GetAxisEncoderFitted(int AxisID, LPBOOL lpbFitted)

To read the configured encoder step size

OI_GetAxisEncoderStepSize(int AxisID, double *pdMicrons)

Note that these functions retrieve the settings as currently defined in the Flash memory and do
not necessarily indicate that the encoder inputs have been sensed by the hardware, but
instead depend on an accurate configuration in the Flash memory.

The encoder step size is actually calculated by looking that the microstep to encoder step ratio,
as defined in the Flash memory. For accurate stepping, it is important to ensure the
microstepping resolution is some multiple of the encoder resolution, and the Flash memory
configuration application allows you to select from various microstepping resolutions in order to
achieve the appropriate ratio for a given encoder.

For instance, if an encoder with 0.1 micron resolution is fitted to an axis with a 2 millimetre pitch
leadscrew, then the microstepping resolution should be set to 40,000 steps per revolution to
ensure a 2:1 ratio of microsteps to encoder inputs. The OI_GetAxisEncoderStepSize
function uses the encoder to microstepping factor and the current microstepping resolution and
step size in order to return the resulting encoder resolution.

Enabling Encoder Inputs

A secondary counter in the OASIS controller, maintained in addition to the normal
microstepping position counter, manages encoder inputs. Closed-loop operation is achieved
when the OASIS controller uses the encoder input counter to correct the position information
maintained by the microstepping counter.

If an encoder has been configured for an axis, the use of the encoder input signals may be
enabled or disabled via software. The function:

OI_SetAxisEncoderEnabled(int AxisID, BOOL bEnabled, BOOL bAutoCorrect)

OASIS4I DLL Manual Version 3.1.3 PAGE 25

is used to enable or disable the use of the encoder input counter, as set by the bEnabled
parameter. The second bAutoCorrect parameter indicates that all movements on that axis
should be corrected based on the encoder feedback.

To determine the status of encoder use for a given axis, call:

OI_GetAxisEncoderEnabled(int AxisID, LPBOOL lpbEnabled, LPBOOL
lpbAutoCorrect)

When encoder inputs are enabled, all position readouts are given based on the encoder input
counter. Therefore the position information is given by the encoder resolution rather than the
microstepping resolution. For instance, if a 2 mm pitch axis is configured for 40,000 microsteps
per rev and a 0.1 micron encoder is also fitted and enabled, the position values will be provided
to the nearest 0.1 micron, rather than the 0.05 micron resolution of the microstepping.

For the X, Y, and Z axes, you can specify whether the encoders as used to perform closed-
loop position maintenance. In closed-loop mode, the OASIS controller uses the encoder
feedback to ensure that movements are made to within a specified tolerance. Also, the
controller will “servo” the current position, using the encoder signals to ensure that the current
position is not changed by any external forces (other than controller movement commands or
joystick-type of inputs).

To enable closed-loop operation, use the functions:

OI_SetEncoderEnabledXY(BOOL bEnabledX, int nTolX, BOOL bEnabledX, int
nTolX)

OI_SetEncoderEnabledZ(BOOL bEnabledZ, int nTolZ)

These functions allow you to enable the use of the encoder counters as well as specify the
counter tolerance over which the controller’s servo mode takes effect.

Reading the Microstepping Resolution

The microstepping resolution for each axis is normally 12,800 microsteps per rev, but may be
modified to other values in the Flash memory. This is done by using the extended Sine-Cosine
lookup tables, which is done in by the Flash memory configuration application. The extended
Sine-Cosine LUTs may be configured to give 10,000, 20,000, 40,000 or 50,000 microsteps per
revolution. The Flash memory provides for two extended Sine-Cosine LUTs in addition to the
12,800 steps / rev default LUTs for each axis. The actual LUT in use for each axis is
configured in the Flash memory as well.

To read the current microstepping resolution for a given axis, call:

OI_GetAxisStepsPerRev(int AxisID, LPDWORD lpdwStepsPerRev)

For more information on configuring the microstepping resolution, please refer to the Flash
memory configuration application.

 Version 3.1.3 OASIS4I DLL Manual PAGE 26

Saving Settings
Many fundamental settings of the controller are stored in the Flash memory and loaded
immediately once the OASIS initialises upon PC power on. These Flash settings ensure the
board is functional prior to any application software usage, for instance allowing immediate
trackball or joystick operation of the motorised hardware.

However, your application may call various DLL functions to modify settings, such as adjusting
the cruise speed for an axis. Also, the DLL maintains some values that are not stored in the
flash memory, such as the currently defined origin for an axis. In order to allow an application
to easily store and retrieve these values, the OASIS DLL offers functions for writing and
reading the settings and position information to disk.

Typically you would load settings and positions just after calling OI_Open to open the
controller. Loading settings prior to a call to OI_Open will have no effect on most settings
because they are maintained in the DSP of the controller. Similarly, you will want to make a
call to save settings before you call OI_Close, because many settings are taken from the
current DSP values and therefore require the hardware driver to be open.

Saving and Loading Settings

To save the current DLL system settings, call:

OI_SaveSettings(LPCTSTR sFile)

The sFile parameter indicates the name a file to use to hold the settings. The file does not
necessarily need to exist, and after the call the results will be stored in a typical Windows INI
file format.

You may also pass an empty string to the OI_SaveSettings function, in which case the
settings are stored into the Windows Registry. For instance, the call:

OI_SaveSettings(“”)

will cause the DLL settings to be stored into the Registry. This alleviates the application from
concerns about the path to configuration files, accidental deleting of settings files, etc.
However, the ability to optionally save the settings to a named file is handy for easily creating
backups of current settings or for offering multiple configurations based on various previously
saved files.

To restore the settings, call:

OI_LoadSettings(LPCTSTR sFile)

where sFile is the name of a previously stored settings file. You may also pass an empty string
to restore settings from the Registry.

OASIS4I DLL Manual Version 3.1.3 PAGE 27

Saving and Loading Positions

The position counters of the DSP are maintained as long as the board has power and has not
been reset. However, this information is lost when the host PC is powered off. The DLL offers
functions for saving and reloading the position values, including the current position, the origin
definition, and the software limits, for the axes.

To save the position information, call:

OI_SavePositions(LPCTSTR sFile)

where sFile is the name of the file used to hold the settings. The format of the file is a typical
Windows INI file. You may also pass an empty string to the function, in which case the position
information is stored to the Registry.

To restore the position information, call:

 OI_LoadPositions(LPCTSTR sFile)

You provide either the name of a previously stored position file or an empty string to reload
settings from the Registry.

Return Values
Each OASIS function returns an integer value indicating the success or failure of the function.

A value of OI_OK indicates the function was acknowledged and accepted by the control
hardware and completed successfully. Non-zero return values indicated failure. A variety of
conditions could lead to command failure, including lack of the required hardware device,
timeout, or user abort.

The following table lists the return codes defined in the OI_CONST.H header file:

Return Code Value Meaning

OI_OK 0 The operation completed successfully.

OI_FAILED 1 The operation failed.

OI_ABORT 2 The operation failed due to a user
abort.

OI_NOHARDWARE 4 The operation failed because the
required hardware is not fitted.

OI_TIMEOUT 8 The operation failed due to a timeout.

OI_INVALIDARG 16 An invalid argument was passed into
the function.

 Version 3.1.3 OASIS4I DLL Manual PAGE 28

OI_HARDWAREBUSY 32 The command could not be executed
because the hardware was busy with
another request.

OI_ACCESSDENIED 64 Access to the desired functionality is
not available.

OI_NOTSUPPORTED 128 The operation is not supported by the
current hardware platform.

OI_ILLEGALAXIS 256 The operation attempted to use an axis
that is not available.

OI_INVALIDCONFIG 512 The requested configuration is not
allowed.

OI_MAXMOVEFAIL 1024 A move command failed because it
exceeded the maximum allowed move
for the specified axis, as defined in the
flash memory.

To further investigate hardware failures, use OI_ReadPCBStatus to inquire about the specific
devices where failure occurred.

OASIS4I DLL Manual Version 3.1.3 PAGE 29

Advanced Topics

Using Multiple OASIS Controllers
Versions 2.02 and later of the OASIS DLL provide support for up to four OASIS controllers in a
single computer. This potentially gives four times the capabilities of a single controller, e.g., up
to 16 independent axes, four separate video processors, etc. Special considerations are made
to ensure a straightforward interface as well as backwards compatibility with single-board
operation.

Counting the Number of Installed OASIS Controllers

Use the OI_CountCards function to determine how many OASIS cards are installed in a
system:

OI_CountCards(int* pnNumber)

The single argument returns the count.

Routing Commands to a Controller

The OASIS DLL uses a “routing” method to send commands to a particular controller. The
selected controller is known as the “active card”, i.e., the OASIS card that will be target for the
API calls to perform various operations.

To set the active card, call:

OI_SelectCard(int nCard)

The nCard argument is a zero-based index of the card, e.g., for N installed cards, the first card
has an index of 0, the last card has an index of N-1.

To determine which card is currently active, call:

OI_GetSelectedCard(int* pnCard)

Except in the case where general axis drive commands (such as the OI_MoveAxis and
OI_ReadAxis functions), once a card is selected, all the API functions will be routed to that
controller.

For instance, consider the instance where 2 controllers are installed in a system. Say that an
XY stage and Z focus are connected to the first controller, while two stepper motors for
specimen handling have been attached to the X and Y axes on the second controller. Figure 8
shows how movement commands would be routed for each board separately.

 Version 3.1.3 OASIS4I DLL Manual PAGE 30

 void MoveExampleTwoCards()
{

// move to xy = 1000, 1000 on first card
// then do an autofocus
OI_SelectCard(0);
OI_MoveToXY(1000, 1000, 1);
OI_AutoFocus();
OI_WaitForAutoFocus();

// move to xy = 50, 50 on the second card
OI_SelectCard(1);
OI_MoveToXY(50, 50, 1);

}

Figure 8. Multiple Card Example

Note that since the OI_SelectCard function acts globally, actions must be performed serially
for each controller. You must ensure that all your actions are complete on one controller
before switching to another one for further commands. However, parallel access to multiple
controllers is possible using the general axis commands.

Using General Axis Commands with Multiple Controllers

The “general axis” commands provide additional functionality beyond the basic command
routing given by the OI_SelectCard function. See “Table 3. API Function Categories” and the
“General, Single Axis Control” section below for more information about the general axis
functions.

Each of the general axis functions takes an Axis ID as an input parameter. For instance, for a
general read of an axis’ position, you may call:

OI_ReadAxis(int AxisID, double* pdVdalue)

The AxisID argument is typically a value ranging from 1 to 4, indicating which axis is to be read.

However, in the case of multiple controllers, the valid AxisID values range from 1 to 4*N, where
N is the number of controllers installed. For example, if three OASIS controllers are present,
then the total number of available axes are 4*3 = 12 axes. The OI_GetTotalAxisCount
function returns the maximum number of axes available for the current configuration:

OI_GetTotalAxisCount(int* pnAxisCount)

By default, you may pass AxisID values up to the total available count and the OASIS DLL will
automatically route the command to the correct controller.

Note that this is independent of the currently active card as set by the OI_SelectCard function.
This provides additional functionality beyond the global command routing provided by
OI_SelectCard.

To ensure compatibility with existing applications and to enable the ability to use the command
routing

OASIS4I DLL Manual Version 3.1.3 PAGE 31

OI_SetMultiAxisMode(int nMode)

OI_GetMultiAxisMode(int* pnMode)

where the nMode argument is either of two values indicating the desired functionality. See
Table 1 below for a description of the constants.

nMode Value Description

OI_MULTI_MODE_ID 0 Use 1 to 4*N axes, overrides OI_SelectCard
setting (default).

OI_MULTI_MODE_ROUTE 1 Use 1 to 4 axes, routed to a particular card
via the OI_SelectCard setting

Table 1. General Axis Routing Constants

Special Considerations When Using Multiple Controllers

Care must be taken when using the global command routing provided by the OI_SelectCard
function, particularly in multi-threaded situations where one area of code may set the active
card using OI_SelectCard, while another area of code is in the middle of a set of operations on
a particular board. Since OI_SelectCard works globally, it affects all subsequent calls, with the
exception of general axis moves routed via the AxisID.

It is recommended to use the general axis commands wherever possible. When using the
OI_MULTI_MODE_ID mode of axis specification, these commands allow multiple cards to be
accessed simultaneously, in parallel, without consideration to which board is currently selected
for command routing using OI_SelectCard.

General Purpose I/O
The OASIS controller provides a number of ports that may be used for general purpose input
and/or output facilities. In particular, the OASIS controller offers:

Port Number
Available

Description

General I/O 2 TTL compatible Input and Output

Open Collector 2 Output only

PL4 Input Ports 4 Input only

Table 2. OASIS I/O Capabilities

These ports may be used to control or trigger external devices or to sense the status of
switches, etc.

 Version 3.1.3 OASIS4I DLL Manual PAGE 32

Three API functions provide access to these inputs and outputs. The following functions
correspond to the 2 General I/O and 2 Open Collector ports:

OI_WriteIO(BYTE byVal)

OI_ReadIO(LPBYTE lpbyVal)

The logic values are set and read using bits in the BYTE argument.

The input ports found on connector PL4 are read using the function:

OI_ReadInputPorts(LPBYTE lpbyVal)

with each input corresponding to a bit in the BYTE argument.

OASIS4I DLL Manual Version 3.1.3 PAGE 33

Function Descriptions
The facilities of the OASIS DLL are organised below into functional groups. These groups are:

Group Meaning

Hardware Control These functions deal with the overall initialisation,
communication, and status of the OASIS hardware.

Version Information These functions return version information about the OASIS
hardware and the OASIS DLL.

General, Single Axis Control Though many of the functions in the OASIS DLL are
organized according to the physical components of a
microscope system (such as stage and focus), the DLL also
offers a representation of the controller in which each axis
may be accessed individually. This section lists those
functions

Simultaneous Three Axis
Control

Many automated microscopy applications use 2 primary
motorized components: The XY stage and the Focus
mechanism. This leads to a 3-dimensional, “X-Y-Z”, class of
functions that are described in this section.

XY Stage Control These functions deal exclusively with the two axes of a
motorized XY stage.

Z / Focus Control These functions deal exclusively with the single, Z-axis of a
motorized focus mechanism.

F-Axis Control These functions deal exclusively with the single fourth, or
“F”, axis available in the OASIS controller.

Encoder and Closed-loop These functions relate to the use of encoder feedback for
position information and closed-loop operation.

Automatic Focus When an OASIS-AF hardware module is fitted, the OASIS
controller provides facilities for automatically focusing a
specimen. This section describes the functions used for
AutoFocus.

Predictive Focus These functions allow you to define and use predictive
focusing, where the focus is automatically adjusted based on
orientation of the plane of the sample relative to the objective
lens.

 Version 3.1.3 OASIS4I DLL Manual PAGE 34

Video and Digital Camera
Interface

When an OASIS-AF hardware module is fitted, the OASIS
controller provides real-time measurements of the total area
and maximum chord length of detected features in the video
signal. This section describes the functions for setting up
and reading out these measurements.

Filter Changer Functions The functions provide an interface for controlling filter
changer devices, such as a rotating filter wheel.

Hardware Joystick /
Trackball Functions

If hardware XY and/or Z axis joystick is fitted to the OASIS
controller, these functions may be used to enable its
operation.

Timeout Functions This section describes the functions used to specify the
timeout durations used for movement, automatic focus, and
video functions.

File I/O Functions These functions are used to save and restore system
settings to and from file.

Error Handling The OASIS DLL maintains extra information about errors
when they occur. These functions are used to obtain this
error information and also specify how general errors are to
be reported.

Micron / Step Conversion
Functions

In some instances an application may need to convert from
the native micron-based coordinate system of the controller
to the low-level microstep values of the OASIS DSP.
Several functions used to perform these conversions are
listed here.

General Purpose Input /
Output

Access to the general I/O hardware of the OASIS controller.

Table 3. API Function Categories

Hardware Control
The hardware control functions deal with the basic initialisation and setup of the controller/host
communication. They can be used to get information about the status of various facilities of the
controller, such as the status of the motor voltage supply, whether an autofocus module is
fitted, or that the Flash memory is properly configured (and not corrupt), to name a few.

These functions also allow you to place the controller in various modes of operation, such as
full hardware communication or simulated operations. You can also configure some
components, such as the Z-drive and the filter changer, to use a different controller such as an
integrated automated microscope rather than the OASIS controller.

OASIS4I DLL Manual Version 3.1.3 PAGE 35

OI_Close

Syntax OI_API OI_Close(void)

Description Closes the OASIS driver for the current session.

Parameters None.

Return
Value

This function always returns OI_OK.

Comments An application that has opened the OASIS hardware driver using a call to
OI_Open should call the OI_Close function before terminating.

See Also OI_Open

OI_CloseComponent

Syntax OI_API OI_CloseComponent(int nComponent)

Description Closes a component.

Parameters nComponent The component ID.

Return
Value

OI_OK if successful.

Comments Currently, only two components, the Z focus and the filter changer, support
configurations to controllers other than the OASIS system. These components
are specified by the following values:

nComponent value Meaning

OI_CFG_FOCUS The Z-axis focus control. All
functions dealing the Z-axis
are routed to the specified
controller.

OI_CFG_FILTER The filter changer. All filter
changer functions are
routed to the specified
controller.

Note that normally, the component will be closed automatically when the
OI_Close function is called, so that a call to OI_CloseComponent is not
needed.

 Version 3.1.3 OASIS4I DLL Manual PAGE 36

See Also OI_Close, OI_Configure, OI_OpenComponent

OI_Configure

Syntax OI_API OI_Configure(int nComponent, int nControl)

Description Configures a component for a specific controller.

Parameters nComponent The component to be configured, as defined in the
comments below.

pnControl The type of controller to use for the given
component. Note that there are limitations on which
components support a given controller.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments Version 2.0 of the OASIS DLL extends the concept of components, like the XY
stage, Z focus, and the autofocus to include the filter changer. Also included is
support for configuring some components to use a secondary controller found
in the Leica Microsystems DMR range of automated microscopes, where the Z-
drive and filter changer automation are built into the microscope stand itself.

The OASIS DLL provides for manipulating the Leica Microsystems DMR Z-
drive and filter changer via the same functions used for the OASIS controller.
Currently, only the Z-axis and filter changer allow configuration for control via
the DMR microscope, and by default these components are configured to use
the OASIS controller.

nComponent value Meaning

OI_CFG_FOCUS The Z-axis focus control. All
functions dealing the Z-axis
are routed to the specified
controller.

OI_CFG_FILTER The filter changer. All filter
changer functions are
routed to the specified
controller.

Note that the Autofocus system will also be affected by the selection of the
Focus component’s controller.

The controller device to use for these components may be one of the following
values:

OASIS4I DLL Manual Version 3.1.3 PAGE 37

nControl value Meaning

OI_OASIS The OASIS controller is
used for the component.

OI_SIM The component’s operation
is simulated.

OI_LEICA_DM The component is an older
style Leica Microsystems
DMRXA, DMRXE, or
DMIRBE

OI_LEICA_DM2 The component is uses the
Leica Microsystems
MICSTC controller.

Note that the Leica Microsystems controller uses a RS-232 communications
interface, so that a spare serial port is required. Also the RS-232 interface is
many orders of magnitude slower than the OASIS’s PCI interface, so the
performance of Z-axis command operations will be significantly reduced.

See Also OI_GetConfiguration, OI_OpenComponent, OI_CloseComponent

OI_CountCards

Syntax OI_API OI_CountCards(int* pnFound)

Description Retrieves the number of OASIS controllers installed in the system.

Parameters pnFound Returns then number of cards found.

Return
Value

OI_OK if successful.

OI_NOHARDWARE if an OASIS board is not found.

Comments Version 2.02 of the OASIS DLL adds support for multiple OASIS cards. Use
the OI_CountCards function to determine the number of cards that have been
installed.

Use the OI_SelectCard to set which card is the target for API commands.

See Also OI_SelectCard, OI_GetSelectedCard

 Version 3.1.3 OASIS4I DLL Manual PAGE 38

OI_EmergencyStopAll

Syntax OI_API OI_EmergencyStopAll(void)

Description Immediately stops all axes.

Parameters None.

Return
Value

OI_OK if successful.

Comments This function does not use deceleration ramps and therefore could cause loss
of positional accuracy. The OASIS hardware will clear the Initialised bits for all
axes to reflect this.

See Also OI_HaltAllAxes, OI_HaltXY, OI_HaltZ, OI_HaltF

OI_EnableMotorPower

Syntax OI_API OI_EnableMotorPower(BOOL bXYEnabled, BOOL bZFEnabled)

Description Enables or disable power to a given set of motors.

Parameters bXYEnabled Flag indicating whether power to the X and Y axes
is to be enabled.

bZFEnabled Flag indicating whether power to the Z and F axes is
to be enabled.

Return
Value

This function returns OI_OK.

Comments Motor power can be enabled and disabled via software, but must be done for
the pair of axes XY or ZF.

OI_EnableMotorPowerEx

Syntax OI_API OI_EnableMotorPowerEx (LPWORD pwMotors)

Description Enables and disables motor power for the axes.

Parameters pwMotors Array of motors to enable/disable.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the

OASIS4I DLL Manual Version 3.1.3 PAGE 39

reason for failure.

Comments Use the OI_EnableMotorPowerEx to turn on or off the motor power for a given
motor. The input array values to 1 to enable, 0 (zero) to disable. The index
assignments are as follows:

Index Axis

0 X

1 Y

2 Z

3 F

See Also OI_EnableMotorPower

OI_GetAFFitted

Syntax OI_API OI_GetAFFitted(BOOL* pbFitted)

Description Retrieves the hardware status indicating the presence or absence of the
OASIS-AF video board.

Parameters pbFitted Returns TRUE if the OASIS-AF module is fitted.
This parameter is set to FALSE otherwise.

Return
Value

This function returns OI_OK.

Comments The OI_GetAFFitted functions can be used to determine whether the OASIS-
AF module is fitted to the system.

See Also OI_SetAutoFocusHWMode, OI_GetAutoFocusHWMode,
OI_ReadPCBStatus

OI_GetAHMDelay

Syntax OI_API OI_GetAHMDelay (LPDWORD pdwMSecs)

Description Retrieves the base delay used when using Leica AHM components.

Parameters pdwMSecs Returned base delay for Leica AHM-related calls.

 Version 3.1.3 OASIS4I DLL Manual PAGE 40

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments See OI_SetAHMDelay for further details.

See Also OI_SetAHMDelay

OI_GetAutoFocusHWMode

Syntax OI_API OI_GetAutoFocusHWMode(int* pnMode)

Description Retrieves the current mode of operation for the automatic focus, either
hardware access or simulated operation.

Parameters pnMode Pointer to value Parameter indicating the hardware
status. This will be set to either:

OI_OASIS (a value of 1), or

OI_SIM (a value of 0).

Return
Value

OI_OK if successful.

OI_NOHARDWARE if the OASIS primary board is not installed.

Comments See the Comments for the OI_SetAutoFocusHWMode function for more
information regarding the OASIS-AF automatic focus settings.

See Also OI_SetAutoFocusHWMode

OI_GetCardAxisCount

Syntax OI_API OI_GetCardAxisCount (int nCard, int* pnAxisCount)

Description Returns the number of available axes on a given card in the system.

Parameters nCard Zero-based index of the card in the system.

pnAxisCount The number of axes available on the specified card.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

OASIS4I DLL Manual Version 3.1.3 PAGE 41

Comments The OASIS-4i and OASIS-blue controller typically support 4 axes on board, but
options modules are available to expand the number of axes supported on a
given card. Use the OI_GetCardAxisCount function to determine the number
of axes available on a given card.

See Also OI_CountCards

OI_GetCardType

Syntax OI_API OI_GetCardType(int nCard, int* pnType)

Description Indicates whether a specified module is fitted to the OASIS controller.

Parameters nCard Zero-based index of the card in the system.

pnType Returns the type of card fitted.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OASIS library supports the fitting of one or more of OASIS-4i and/or
OASIS-blue controllers in a system. To determine the type of card fitted, use
the OI_GetCardType function. The returned type will be one of the values
listed in the following table:

nType value Controller

OASIS_4I OASIS-4i

OASIS_BLUE OASIS-blue

See Also OI_CountCards

OI_GetComponentStatus

Syntax OI_API OI_GetComponentStatus(int nComponent, LPDWORD
lpdwStatus)

Description Retrieves the current status report for a given component.

Parameters nComponent The component.

lpdwStatus The returned status DWORD.

 Version 3.1.3 OASIS4I DLL Manual PAGE 42

Return
Value

OI_OK if successful.

OI_NOHARDWARE if an OASIS board is not found.

Comments Use the OI_GetComponentStatus to find out whether a given component has
been opened properly.

The following components are supported by this function:

nComponent value Meaning

OI_CFG_FOCUS The Z-axis focus control.

OI_CFG_FILTER The filter changer.

OI_CFG_FILTER2 The second filter changer.

OI_CFG_TURRET The objective lens turret.

OI_CFG_LAMP1 The lamp channel 1.

The returned status parameter will be a combination of the following:

Status Meaning

OI_OK The operation completed
successfully.

OI_FAILED The operation failed.

OI_ABORT The operation failed due to
a user abort.

OI_NOHARDWARE The operation failed
because the required
hardware is not fitted.

OI_TIMEOUT The operation failed due to
a timeout.

OI_INVALIDARG An invalid argument was
passed into the function.

OI_HARDWAREBUSY The command could not be
executed because the
hardware was busy with
another request.

OI_ACCESSDENIED Access to the desired
functionality is not available.

OI_NOTSUPPORTED The operation is not
supported by the current
hardware platform.

OASIS4I DLL Manual Version 3.1.3 PAGE 43

OI_ILLEGALAXIS The operation attempted to
use an axis that is not
available.

OI_INVALIDCONFIG The requested configuration
is not allowed.

See Also OI_OpenComponent, OI_CloseComponent, OI_Configure

OI_GetConfiguration

Syntax OI_API OI_GetConfiguration(int nComponent, int *pnControl)

Description Returns the currently configured controller for a given component..

Parameters nComponent The component.

pnControl The returned controller ID.

Return
Value

OI_OK if successful.

Comments Currently, only two components, the Z focus and the filter changer, support
configurations to controllers other than the OASIS system. These components
are specified by the following values:

nComponent value Meaning

OI_CFG_FOCUS The Z-axis focus control. All
functions dealing the Z-axis
are routed to the specified
controller.

OI_CFG_FILTER The filter changer. All filter
changer functions are
routed to the specified
controller.

The returned controller ID will be one of the following values:

pnControl value Meaning

OI_OASIS The OASIS controller is
used for the component.

 Version 3.1.3 OASIS4I DLL Manual PAGE 44

OI_SIM The component’s operation
is simulated.

OI_LEICA_DM The component is an older
style Leica Microsystems
DMRXA, DMRXE, or
DMIRBE

OI_LEICA_DM2 The component is uses the
Leica Microsystems
MICSTC controller.

See the OI_Congiure function for more information on component
configurations.

See Also OI_Open, OI_GetHardwareMode

OI_GetDefaultAbortKeys

Syntax OI_API OI_GetDefaultAbortKeys(LPBOOL pbEnabled)

Description Retrieves whether the default abort key press handling has been enabled.

Parameters pbEnabled Returns the enabling flag.

Return
Value

OI_OK if successful.

Comments See the OI_SetDefaultAbortKeys function for a description of the handling of
abort key presses.

See Also OI_ SetDefaultAbortKeys

OI_GetDefaultWaitCursorEnabled

Syntax OI_API OI_GetDefaultWaitCursorEnabled(LPBOOL pbEnabled)

Description Retrieves whether the default wait cursors have been enabled.

Parameters pbEnabled Returns the enabling flag.

Return
Value

OI_OK if successful.

Comments See the OI_SetDefaultWaitCursorEnabled function for a description of the

OASIS4I DLL Manual Version 3.1.3 PAGE 45

default wait cursors.

See Also OI_SetDefaultWaitCursor

OI_GetDriverOpen

Syntax OI_API OI_GetDriverOpen(BOOL* pbOpen)

Description Determines whether the OASIS driver is already open for the current session.

Parameters pbOpen Flag returned indicating whether the OASIS driver
has been opened for the current session.

Return
Value

OI_OK if successful.

OI_NOHARDWARE if an OASIS board is not found.

Comments The pbOpen BOOL value will set to TRUE if the OASIS hardware driver has
previously been opened by the current process.

See Also OI_Open, OI_Close

OI_GetFlashCheckSum

Syntax OI_API OI_GetFlashCheckSum(LPWORD pwCheckSum)

Description Retrieves the current checksum value from the user block of the flash memory.

Parameters pwCheckSum The checksum value.

Return
Value

OI_OK if successful.

Comments Most physical settings for the OASIS controller are stored in the user block of
the on-board flash memory. These settings include the configuration for motor
currents, axis drive direction, limit switch polarity and direction, and so on.

The checksum value returned by OI_GetFlashCheckSum can help ensure that
the user flash block contains the desired information, has not been corrupted,
etc., by comparing the flash checksum of the current system with a previously
stored value from a known standard setup.

See Also OI_Open

 Version 3.1.3 OASIS4I DLL Manual PAGE 46

OI_GetHardwareMode

Syntax OI_API OI_GetHardwareMode(int* pnMode)

Description Retrieves the hardware mode of operation, indicating either hardware access or
simulated operation.

Parameters pnMode Pointer to value Parameter indicating the hardware
status. This will be set to either:

OI_OASIS (a value of 1), or

OI_SIM (a value of 0).

Return
Value

OI_OK if successful.

OI_NOHARDWARE if an OASIS board is not found.

Comments The OI_GetHardwareMode function can be used to check what mode the
OASIS DLL is currently using.

See Also OI_SetHardwareMode, OI_Open

OI_GetMultiAxisMode

Syntax OI_API OI_GetMultiAxisMode(int* pnMode)

Description Retrieves the current mode of operation for functions using AxisID parameters
in systems with multiple OASIS controllers fitted.

Parameters pnMode Returns the current multiple axis mode.

Return
Value

OI_OK if successful.

OI_NOHARDWARE if an OASIS board is not found.

Comments The returned nMode will be either:

nMode Value Description

OI_MULTI_MODE_ID 0 Use 1 to 4*N axes, overrides
OI_SelectCard setting (default).

OI_MULTI_MODE_ROUTE 1 Use 1 to 4 axes, routed to a
particular card via the
OI_SelectCard setting

See the OI_SetMultiAxisMode for a detailed description on using AxisID values
with multiple controllers.

OASIS4I DLL Manual Version 3.1.3 PAGE 47

See Also OI_SetMultiAxisMode, OI_SelectCard

OI_GetSelectedCard

Syntax OI_API OI_GetSelectedCard(int* pnCard)

Description Retrieves the currently selected card in a multi-card situation.

Parameters pnCard Returns the zero-based index of the active card.

Return
Value

OI_OK if successful.

OI_NOHARDWARE if an OASIS board is not found.

Comments In a multiple OASIS card installation, use the OI_GetSelectedCard function to
determine which card is currently active, i.e., which card has been selected to
receive the API commands.

See Also OI_SelectCard, OI_CountCards

OI_GetTotalAxisCount

Syntax OI_API OI_GetTotalAxisCount(int* pnAxisCount)

Description Retrieves the total number of available axes.

Parameters pnAxisCount Returns the total number of available axes.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments In systems where multiple OASIS controllers are installed, the total axis count
will be 4*N, where N is the number of controllers. The OI_GetTotalAxisCount
function will return this value.

See Also OI_SetMultiAxisMode, OI_GetMultiAxisMode

OI_GetUseCount

Syntax OI_API OI_GetUseCount(int* pnUsers)

 Version 3.1.3 OASIS4I DLL Manual PAGE 48

Description Retrieves the total number of users that have connected to the OASIS DLL.

Parameters pnUsers Returns the current number of users of the library.

Return
Value

OI_OK if successful.

Comments The value returned by OI_GetUseCount indicates the number of processes
that have opened the OASIS hardware via calls to OI_Open.

See Also OI_Open, OI_Close

OI_IsModuleFitted

Syntax OI_API OI_IsModuleFitted (int nModule, LPBOOL pbFitted)

Description Indicates whether a specified module is fitted to the OASIS controller.

Parameters nModule The module in question.

pbFitted Returns TRUE if the module is fitted.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments A number of daughter modules may be fitted to the OASIS-4i and OASIS-blue
controllers. These modules are:

nModule value Meaning Controller

OASIS_AF Video autofocus. OASIS-4i

OASIS_XA1 Fifth axis. OASIS-4i

OASIS_DC1 Trigger I/O. OASIS-4i

BLUE_EXPIO Encoder and Trigger I/O. OASIS-blue

You can use the OI_IsModuleFitted function to determine if a particular
hardware option is present.

See Also OI_ReadPCBStatus, OI_ReadPCBStatusEx

OASIS4I DLL Manual Version 3.1.3 PAGE 49

OI_Open

Syntax OI_API OI_Open (void)

Description Initialises the OASIS driver for use in the current session.

Parameters None.

Return
Value

OI_OK if successful.

OI_NOHARDWARE if an OASIS board is not found.

Comments The OI_Open function opens the OASIS hardware driver and therefore should
be called before any functions that access the OASIS hardware.

See Also OI_Close, OI_SetHardwareMode

OI_OpenComponent

Syntax OI_API OI_OpenComponent(int nComponent)

Description Opens a component for operation, using its configured controller.

Parameters nComponent The component.

Return
Value

OI_OK if successful.

Comments Currently, only two components, the Z focus and the filter changer, support
configurations to controllers other than the OASIS system. These components
are specified by the following values:

nComponent value Meaning

OI_CFG_FOCUS The Z-axis focus control. All
functions dealing the Z-axis
are routed to the specified
controller.

OI_CFG_FILTER The filter changer. All filter
changer functions are
routed to the specified
controller.

Note that normally, if the desired component’s controller has been selected
prior to the call to OI_Open, the component will be opened automatically and
the OI_OpenComponent is not needed.

 Version 3.1.3 OASIS4I DLL Manual PAGE 50

See Also OI_Open, OI_Configure, OI_CloseComponent

OI_ReadCardStatus

Syntax OI_API OI_ReadCardStatus(int nCard, LPDWORD lpdwStatus)

Description Retrieves the current hardware status report for a given board.

Parameters nCard The zero-based index of the card for which the
status report is desired.

lpdwStatus The returned status DWORD.

Return
Value

OI_OK if successful.

OI_NOHARDWARE if an OASIS board is not found.

Comments See the OI_ReadPCBStatus function for a description of the status DWORD
values.

See Also OI_ReadPCBStatus

OI_ReadPCBName

Syntax OI_API OI_ ReadPCBName(int nCard, LPSTR szName, int nStringLen)

Description Retrieves the current hardware status report for a given board.

Parameters nCard The zero-based index of the card for which the
status report is desired.

szName Pointer to buffer to receive the controller name.

nStringLen The length of the passed-in szName string buffer.

Return
Value

OI_OK if successful.

OI_NOHARDWARE if an OASIS board is not found.

Comments The OI_ReadPCBName function is used to return a string value indicating the
name of a given controller in the system.

For instance, the returned string will be “OASIS-blue” if an OASIS-blue
controller is installed.

See Also OI_ReadPCBType

OASIS4I DLL Manual Version 3.1.3 PAGE 51

OI_ReadPCBStatus

Syntax OI_API OI_ReadPCBStatus(LPDWORD *lpdwHWState)

Description Retrieves the current hardware status report.

Parameters lpdwHWState Returns a status DWORD indicating the current
hardware status, as defined in the Comments
section below.

Return
Value

OI_OK if successful.

OI_NOHARDWARE if an OASIS board is not found.

Comments The returned DWORD has the following indicator bits:

Bit Code Meaning

0 S_PCB_MOTOR_VOLTS_OK
1 = Motor supply >= 10V i.e.
OK

1 S_PCB_TEMP_OK 1 = PCB Temperature too high

2 S_PCB_ADC_YIN_OK
1 = ADC analogue input Y is
zero (correct) at switch on

3 S_PCB_ADC_XIN_OK
1 = ADC analogue input X is
zero (correct) at switch on

4 S_PCB_AF_FITTED
1 = OASIS-AF Auto-Focus
Module Detected

5 S_PCB_AF_TYPE0
2 bit code indicating module
type

6 S_PCB_AF_TYPE1
2 bit code indicating module
type

7 S_PCB_VIDEO_ENCODER_OK
1 = Video Encoder configured
OK

8 S_PCB_CAMERA_DETECTED 1 = Camera input detected

9 S_PCB_CAMERA_CHANNEL
1 = Camera Channel 3, 0 =
Camera channel 0 (default)

10 S_PCB_CAMERA_FREQ
1 = Camera Frequency is 50
Hz, 0 = 60 Hz

11 S_PCB_CAMERA_TYPE
1 = Colour Camera, 0 = Mono
Camera

12 S_PCB_SERIAL_DEV_DETECTED
1 = Serial device detected on
RS232_0

 Version 3.1.3 OASIS4I DLL Manual PAGE 52

13 S_PCB_MOUSE_DETECTED
1 = Serial device is standard 2-
button mouse

14 S_PCB_TRACKBALL_FITTED
1 = Serial device is Kensington
Trackball 5

15 Reserved

16 S_PCB_JOYSTICK_FITTED 1 = Joystick unit fitted

17 Reserved

18 S_PCB_FLASH_OI_OK
1 = Flash OI area checksum
OK

19 S_PCB_FLASH_USER_OK
1 = Flash user area checksum
OK

The specified Code value may be used to check a specific bit. For instance, the
following example function tests for the presence of a trackball controller:

BOOL IsTrackBallFitted()
{
 DWORD dwStatus;
 OI_ReadPCBStatus(&dwStatus);
 if (dwStatus & S_PCB_TRACKBALL_FITTED)
 return TRUE;
 else
 return FALSE;
}

See Also OI_Open

OI_ReadPCBTemperature

Syntax OI_API OI_ReadPCBTemperature(double *pdTempC)

Description Retrieves the current hardware status report.

Parameters pdTempC Returns the current OASIS PCB temperature, in
degrees Celsius.

Return
Value

OI_OK if successful.

OI_NOHARDWARE if an OASIS board is not found.

Comments The returned temperature is derived from a reading of ADC channel 4. Use the
OI_ReadPCBStatus function to determine if the board temperature is operating
within design parameters.

OASIS4I DLL Manual Version 3.1.3 PAGE 53

See Also OI_ReadPCBStatus

OI_ReadPCBType

Syntax OI_API OI_ReadPCBType (int* pnType)

Description Retrieves the current hardware status report.

Parameters pnType Returns the type of OASIS controller fitted.

Return
Value

OI_OK if successful.

OI_NOHARDWARE if an OASIS board is not found.

Comments The returned value indicates the type of OASIS controller fitted in the system.
The value will be one of the following:

Type Value Description

OASIS_BLUE 1 The controller is an OASIS-blue card.

OASIS_4I 0 The controller is an OASIS-4i card.

See Also OI_ReadPCBName, OI_ReadPCBStatus

OI_ResetHardware

Syntax OI_API OI_ResetHardware()

Description Resets the controller hardware, similar to a power on sequence.

Parameters None.

Return
Value

OI_OK if successful.

Comments The OI_ResetHardware function resets the internal controller hardware to its
initial state.

Note that the default settings are re-read from the flash memory, so current
settings and position information may be lost. You may precede a call to
OI_ResetHardware with calls to OI_SaveSettings and OI_SavePositions to
store the current values before the reset. Subsequent calls to
OI_LoadSettings and OI_LoadPositions after the reset will restore you’re
previous settings and positions.

See Also OI_SaveSettings, OI_SavePositions, OI_LoadSettings, OI_LoadPositions

 Version 3.1.3 OASIS4I DLL Manual PAGE 54

OI_SelectCard

Syntax OI_API OI_SelectCard(int nCard)

Description Selects which card is the target for API commands.

Parameters nCard The zero-based index of the card.

Return
Value

OI_OK if successful.

OI_NOHARDWARE if an OASIS board is not found.

Comments In a multiple-card situation, most API commands—except for general axis
commands—are routed to the currently active board. By default this is board 0,
i.e., the first board detected in the system. Use the OI_SelectCard function to
select which board is to be the target for all subsequent API commands.

Note that the general axis functions, such as OI_ReadAxis and OI_MoveAxis,
may instead use an AxisID parameter to determine the target axis and board,
depending on the OI_SetMultiAxisMode setting.

See Also OI_GetSelectedCard, OI_CountCards, OI_SetMultiAxisMode

OI_SetAHMDelay

Syntax OI_API OI_SetAHMDelay (DWORD dwMSecs)

Description Sets the base delay used when using Leica AHM components.

Parameters dwMSecs Base delay for Leica AHM-related calls.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments Some components such as focus, objective turret, and XY stage may be
configured as OI_LEICA_AHM or OI_LEICA_ISO, which support commands
via the Leica Microsystems AHM interface. When using these components, the
OASIS DLL needs to apply some delays to ensure proper initialisation of
components. The OI_SetAHMDelay function sets a base delay for these
operations.

The default delay value is 1000 msec, i.e., 1 second. Reducing the delay value
will result in faster startup times for AHM components but may also result in
unreliable connection to the Leica components.

OASIS4I DLL Manual Version 3.1.3 PAGE 55

See Also OI_GetAHMDelay

OI_SetAutoFocusHWMode

Syntax OI_API OI_SetAutoFocusHWModeint nMode)

Description Sets the mode of operation for the automatic focus either to hardware access or
for simulated operation.

Parameters nMode Parameter indicating the hardware status. This
should be set to either:

OI_OASIS (a value of 1), or

OI_SIM (a value of 0).

Return
Value

OI_OK if successful.

OI_NOHARDWARE if the OASIS-AF hardware is not installed and an attempt
is made to set the AutoFocus system into OI_OASIS hardware mode.

Comments The OASIS-AF video board provides analysis of an incoming standard video
signal for automatic focus operation and other measurements.

The OI_SetAutoFocusHWMode function allows simulated operation of the
OASIS-AF facilities when the hardware is not fitted.

See Also OI_GetAutoFocusHWMode, OI_AutoFocus, OI_ReadFocusScore,
OI_ReadVideoResults

OI_SetDefaultAbortKeys

Syntax OI_API OI_SetDefaultAbortKeys(BOOL bEnabled)

Description Enables the use of default abort key press handling during movement
operations where a wait until stopped flag is used.

Parameters bEnabled The enabling flag.

Return
Value

OI_OK if successful.

Comments The OASIS DLL normally processes keystroke messages when in a wait loop
that check for movement to stop, for instance, any move function called with a
non-zero wait parameter or the OI_WaitForStopped… type of functions. The
keys that cause an aborted movement are the ESCAPE key and the CTRL-C
key combination. By default, the wait loop will look at the current thread’s
message queue to see if these keys have been pressed and, if so, will abort the

 Version 3.1.3 OASIS4I DLL Manual PAGE 56

movement.

However, some application may wish to disable these keys, in order to provide
their own handling of movement aborts. The OI_SetDefaultAbortKeys
function may be used to disable or re-enable the default keystroke checking
behaviour.

By default, the keystroke checking is enabled, i.e., all movement wait loops will
check the message queue for ESC or CTRL-C key presses and will stop the
relevant motor drive and return from the wait loop if they are detected.

If you disable the default abort key behaviour, it is recommended that your
application provide some means for the user to halt a movement action. This
provides a safety mechanism by allowing the user to quickly terminate a
movement if necessary.

See Also OI_GetDefaultAbortKeys, OI_WaitForStoppedXYZ,
OI_WaitForStoppedXY, OI_WaitForStoppedZ, OI_WaitForStoppedF,
OI_WaitForAutoFocus

OI_SetDefaultWaitCursorEnabled

Syntax OI_API OI_SetDefaultWaitCursorEnabled(BOOL bEnabled)

Description Enables the use of default wait cursors during movement operations.

Parameters bEnabled The enabled flag.

Return
Value

OI_OK if successful.

Comments The OASIS DLL can be configured to show special wait cursors when various
control actions are taking place. These actions are movements with wait flags
enabled, waiting for a movement to finish, and waiting for an autofocus to finish.

The OI_SetDefaultWaitCursorEnabled function is used to enable or disable
the display of these cursors during those actions. Enabling the cursors
provides a simple means for an application to provide feedback to the user than
an automation action is currently underway and the system is waiting for the
action to complete.

See Also OI_GetDefaultWaitCursorEnabled

OI_SetHardwareMode

Syntax OI_API OI_SetHardwareMode(int nMode)

Description Sets the hardware mode of operation, either for hardware access or for

OASIS4I DLL Manual Version 3.1.3 PAGE 57

simulated operation.

Parameters nMode Parameter indicating the hardware status. This
should be set to either:

OI_OASIS (a value of 1), or

OI_SIM (a value of 0).

Return
Value

OI_OK if successful.

Comments Calls to OI_SetHardwareMode should be made prior to opening the OASIS
driver via calls to OI_Open.

The OASIS hardware functionality may be simulated by the DLL when a board
is not present in the system, for instance allowing development on systems that
do not contain the OASIS hardware.

If the hardware mode is set to OI_OASIS but the OASIS hardware is not
installed in the system, the OI_SetHardwareMode function will return OI_OK,
but subsequent calls to OI_Open or any other function that accesses the
OASIS hardware will fail.

See Also OI_Open, OI_GetHardwareMode

OI_SetMultiAxisMode

Syntax OI_API OI_SetMultiAxisMode(int nMode)

Description Sets the mode of operation for general axis functions, i.e., those functions that
use an AxisID parameter, when more than one OASIS controller is present.

Parameters nMode The desired mode of operation, as described in the
comments below.

Return
Value

OI_OK if successful.

Comments In situations where multiple OASIS controllers are present, those functions
taking an AxisID parameter either may be routed to the currently selected
controller, as defined by the OI_SelectCard function, or be routed to the
corresponding board based on the AxisID.

The following values may be used with the nMode parameter:

nMode Value Description

 Version 3.1.3 OASIS4I DLL Manual PAGE 58

OI_MULTI_MODE_ID 0 Use 1 to 4*N axes, overrides
OI_SelectCard setting (default).

OI_MULTI_MODE_ROUTE 1 Use 1 to 4 axes, routed to a
particular card via the
OI_SelectCard setting

The OI_MULTI_MODE_ID option allows AxisID values to range from 1 to 4*N
axes, where N is the number of OASIS cards fitted in the system. For instance,
if 3 OASIS cards are fitted, then the AxisID values may range from 1 to 12. The
OASIS DLL will automatically determine which board to use based on the
AxisID value. That is, AxisID values 1-4 correspond to the four axes on card 0,
while AxisID values 5-8 are the four axes on card 1, and so on.

The OI_MULTI_MODE_ID option works independently of the OI_SelectCard
setting. Therefore, those functions that use an AxisID parameter may be used
in conjunction with the other API functions without affecting the currently active
card.

The OI_MULTI_MODE_ROUTE option always uses AxisID values ranging only
from 1 to 4 that are routed to the active board, as selected by the
OI_SelectCard function. This function provides compatibility with existing
applications that use the AxisID-based functions and wish to have those
functions routed to a given controller using the OI_SelectCard function.

See Also OI_GetMultiAxisMode, OI_SelectCard

Version Information

OI_GetDriverVersion

Syntax OI_API OI_GetDriverVersion(LPSTR lpszVersion, int nStringLen)

Description Returns a string containing version information for the OASIS DLL.

Parameters lpszVersion String buffer into which the version information will
be copied.

nStringLen The size of the string buffer passed in the
lpszVersion parameter.

Return
Value

OI_OK if successful.

Comments The OI_GetDriverVersion returns the file version information for the
OASIS4I.DLL file.

OASIS4I DLL Manual Version 3.1.3 PAGE 59

See Also OI_ReadPCBVersion

OI_ReadPCBID

Syntax OI_API OI_ReadPCBID (LPSTR lpszBuffer, int nStringLen)

Description Returns a string containing the firmware ID information for the OASIS controller
hardware.

Parameters lpszBuffer String buffer into which the version information will
be copied.

nStringLen The size of the string buffer passed in the
lpszVersion parameter.

Return
Value

OI_OK if successful.

Comments Use the OI_ReadPCBID function to read the extended firmware ID of the
OASIS hardware.

See Also OI_GetDriverVersion

OI_ReadPCBVersion

Syntax OI_API OI_ReadPCBVersion (LPSTR lpszVersion, int nStringLen)

Description Returns a string containing the firmware version information for the OASIS
controller hardware.

Parameters lpszVersion String buffer into which the version information will
be copied.

nStringLen The size of the string buffer passed in the
lpszVersion parameter.

Return
Value

OI_OK if successful.

Comments Use the OI_ReadPCBVersion function to read the firmware version currently in
use by the OASIS hardware.

See Also OI_GetDriverVersion

 Version 3.1.3 OASIS4I DLL Manual PAGE 60

OI_ReadSerialNum

Syntax OI_API OI_ReadSerialNum(int nCard, LPSTR lpszSerialNum, int
nStringLen)

Description Returns a string containing the serial number for the OASIS controller
hardware.

Parameters nCard The zero-based index of the desired card. For
single card installations, use a value of 0.

lpszSerialNum String buffer into which the serial number
information will be copied.

nStringLen The size of the string buffer passed in the
lpszSerialNum parameter.

Return
Value

OI_OK if successful.

Comments Each OASIS controller will have a unique serial number. Use the
OI_ReadSerialNum function to retrieve the serial number as a string.

This value may be useful in situations where multiple controllers are fitted, in
order to uniquely distinguish between the cards.

See Also OI_GetDriverVersion, OI_ReadPCBVersion

General, Single Axis Control
General-purpose, single axis functions provide independent access to each of the four
available OASIS axis controllers. The desired axis is indicated by the AxisID parameter, as
defined in OI_CONST.H:

Axis Code Value

OI_XAXIS 1

OI_YAXIS 2

OI_ZAXIS 3

OI_FAXIS 4

OI_TAXIS 5

OASIS4I DLL Manual Version 3.1.3 PAGE 61

OI_ClearAxisUserLimits

Syntax OI_API OI_ClearAxisUserLimits (int AxisID)

Description Clears the user (software) limit values, i.e., makes them unset. The controller
will no longer obey the user limits once this function is called.

Parameters AxisID The desired axis (see the introduction of this section
for the appropriate constants).

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments Each axis of the OASIS controller can be set to use software limits, specifyng a
minimum and maximum position to be used for the range of travel. When the
user software limits are set, the controller will obey these positions as if they
were physical limits of travel. The OI_ClearAxisUserLimits function will clear
(disable) the use of software user limits on the specified axis.

See Also OI_SetAxisUserLimits, OI_GetAxisUserLimits

OI_DriveAxisContinuous

Syntax OI_API OI_DriveAxisContinuous(int AxisID, int nSpeed)

OI_API OI_DriveAxisContinuousEx(int nCard, int AxisID, int nSpeed)

Description Moves the axis continuously at a given rate and direction.

Parameters nCard The zero-based index of the card to use, in a multi-
card configuration.

AxisID The desired axis (see the introduction of this section
for the appropriate constants).

nSpeed

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The nSpeed parameter specifies a speed in half-steps per second.

The nSpeed value is signed to indicate the direction of travel, i.e., a negative
speed causes a continuous drive in the negative direction, and may be any

 Version 3.1.3 OASIS4I DLL Manual PAGE 62

integer in the range of –4096 to +4096.

To stop the continuous movement, use a corresponding call to OI_HaltAxis
function.

Warning If the axis limits are not appropriately set for the physical limitations of the
microscope, continuous movement of an axis could cause the collision of
mechanical and optical components of the microscope system.

Caution should be taken by an application to ensure that appropriate safety
mechanisms are in place to prevent damage to the optical system. Usually this
means that safe user limits and/or limit switch positions for each axis have been
set so as to prevent movements that would result in collisions.

The OASIS DLL provides a safety function, OI_EmergencyStopAll, to
immediately stop all axes from being driven. An application should provide
facilities allowing the user to effectively access this function in all appropriate
situations in order to ensure hardware damage is prevented.

See Also OI_HaltAxis, OI_HaltXY, OI_HaltZ, OI_HaltF, OI_EmergencyStopAll

OI_FlashReadAxisPitch

Syntax OI_API OI_FlashReadAxisPitch(int AxisID, double *pdPitchMM)

Description Retrieves the status of backlash correction for a given axis.

Parameters AxisID The desired axis (see the introduction of this section
for the appropriate constants).

pdPitchMM The returned pitch of the given axis, in millimetres.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments This function reads the pitch value as defined for a given axis in the controller’s
user flash memory block. Note that this value may differ from the currently
active pitch value for the axis, since the pitch specified by software calls to
OI_SetPitchXY, OI_SetPitchZ, OI_SetPitchF supersede whatever value is
written in the flash memory.

See Also OI_SetPitchFromFlashXYZ, OI_SetPitchXY, OI_SetPitchZ, OI_SetPitchF

OI_GetAxisBacklash

Syntax OI_API OI_GetAxisBacklash(int AxisID, BOOL* pbEnabled)

OASIS4I DLL Manual Version 3.1.3 PAGE 63

Description Retrieves the status of backlash correction for a given axis.

Parameters AxisID The desired axis (see the introduction of this section
for the appropriate constants).

pbEnabled A flag indicating the status of backlash correction:

A TRUE value indicates that backlash correction is
enabled.

A FALSE value indicates that backlash correction is
disabled.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments See the OI_SetAxisBacklash function for more information regarding backlash
correction.

See Also OI_SetAxisBacklash

OI_GetAxisCruise

Syntax OI_API OI_GetAxisCruise(int AxisID, int* pnCruise)

OI_API OI_GetAxisCruiseEx(int nCard, int AxisID, int* pnCruise)

Description Retrieves the current cruise speed index for a given axis.

Parameters nCard The zero-based index of the card to use, in a multi-
card configuration.

AxisID The desired axis (see the introduction of this section
for the appropriate constants).

pnCruise Returns the current cruise index.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments See the Comments for OI_SetAxisCruise for more information regarding
cruise speed.

See Also OI_SetAxisCruise, OI_SetAxisRamp, OI_ReadRampValue

 Version 3.1.3 OASIS4I DLL Manual PAGE 64

OI_GetAxisInitMethod

Syntax OI_API OI_GetAxisInitMethod (int AxisID, int *pnMethod)

Description Sets the.

Parameters AxisID The desired axis (see the introduction of this section
for the appropriate constants).

pnMethod The returned value for the method to use for
initialising the axis.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments See the definition of OI_SetAxisInitMethod for a full description of the different
methods for initialising an axis.

See Also OI_SetAxisInitMethod, OI_InitializeXY, OI_SetAxisTravel,
OI_GetAxisTravel

OI_GetAxisMaxMove

Syntax OI_API OI_GetAxisMaxMove(int AxisID, LPDWORD lpdwValue)

Description Retrieves the current pre-defined ramp table in use for a given axis.

Parameters AxisID The desired axis (see the introduction of this section
for the appropriate constants).

lpdwValue Returns the maximum allowable move for the given
axis, as described in the Comments section below.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OASIS controller provides protection against extreme moves, e.g., moves
that involve an unusually large distance for a typical microscope automation
situation. If the user limits have not been properly defined, these moves could
cause physical damage due to collisions such as the objective lens striking the
specimen.

This protection is implemented as a maximum allowable move, defined in
microsteps. The OI_GetAxisMaxMove function allows the current setting for a
given axis to be returned.

OASIS4I DLL Manual Version 3.1.3 PAGE 65

The values for the maximum move for each axis are stored in the OASIS flash
memory.

See Also OI_ReadMaxMoveXY, OI_ReadMaxMoveZ, OI_ReadMaxMoveF

OI_GetAxisPitch

Syntax OI_API OI_SetAxisPitch(int AxisID, double* pdPitchMM)

OI_API OI_ SetAxisPitchEx(int nCard, int AxisID, double* pdPitchMM)

Description Sets the pre-defined acceleration / deceleration ramp table to use.

Parameters nCard The zero-based index of the card to use, in a multi-
card configuration.

AxisID The desired axis (see the introduction of this section
for the appropriate constants).

pdPitchMM The returned axis pitch, in mm, i.e., the expected
travel per revolution of the motor.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments Calibration data for an axis is defined by the amount of travel expected for
either one step or for each turn of the motor. For the latter, the pitch value is
used, defined in millimetres per turn.

See Also OI_GetAxisRamp, OI_SetAxisCruise, OI_GetAxisRampValue

OI_GetAxisRamp

Syntax OI_API OI_GetAxisRamp(int AxisID, int* pnRamp)

OI_API OI_GetAxisRampEx(int nCard, int AxisID, int* pnRamp)

Description Retrieves the current pre-defined ramp table in use for a given axis.

Parameters nCard The zero-based index of the card to use, in a multi-
card configuration.

AxisID The desired axis (see the introduction of this section
for the appropriate constants).

 Version 3.1.3 OASIS4I DLL Manual PAGE 66

pnRamp Returns the current ramp, as described in the
Comments section below.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments Three pre-defined tables may be selected for a given axis, as indicated by the
pnRamp parameter:

pnRamp value Acceleration

0 Slow

1 Medium

2 Fast

See Also OI_SetAxisRamp, OI_SetAxisCruise, OI_GetAxisCruise,
OI_GetAxisRampValue

OI_GetAxisRange

Syntax OI_API OI_GetAxisRange(int AxisID, double* pdMin, double* pdMax)

Description Read the available range of travel for the axis, as defined by the minimum and
maximum position values of the User Limits.

Parameters AxisID The desired axis (see the introduction of this section
for the appropriate constants).

pdMin Returns the minimum coordinate value for the axis,
in microns.

pdMax Returns the maximum coordinate value for the axis,
in microns.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments Each axis has available range of motion, typically set during the initialisation
procedure for that axis. The range is defined by minimum and maximum
values in the micron-based coordinate system of the axis. The values will be
the current software limits, if set.

See Also OI_InitializeXY, OI_InitializeZ, OI_InitializeF

OASIS4I DLL Manual Version 3.1.3 PAGE 67

OI_GetAxisSense

Syntax OI_API OI_GetAxisSense(int AxisID, int* pnSense)

Description Retrieves the joystick drive sense for an axis.

Parameters AxisID The desired axis (see the introduction of this section
for the appropriate constants).

pnSense Returns the drive sense flag.

A value of zero (0) indicates standard movement.

A non-zero value indicates reversed movement.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments See the Comments for OI_SetAxisSense for more information about drive
sense.

See Also OI_SetAxisSense

OI_GetAxisStepSize

Syntax OI_API OI_GetAxisStepSize(int AxisID, double* pdStepSize)

Description Retrieves the current distance of travel, in microns, for each micro-step.

Parameters AxisID The desired axis (see the introduction of this section
for the appropriate constants).

pdStepSize Returns the current step size, in microns.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments See the OI_SetAxisStepSize function for more information about step sizes.

See Also OI_SetAxisStepSize, OI_SetPitchXY

 Version 3.1.3 OASIS4I DLL Manual PAGE 68

OI_GetAxisStepsPerRev

Syntax OI_API OI_GetAxisStepsPerRev(int AxisID, LPDWORD lpdwStepsPerRev
)

Description Retrieves the number of microsteps made per motor revolution.

Parameters AxisID The desired axis (see the introduction of this section
for the appropriate constants).

lpdwStepsPerRev The returned number of microsteps per revolution

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The number of microsteps per revolution determines the resolution of motor
stepping. The more microsteps made per revolution, the finer the step size.

This value is set in the Flash memory of the OASIS controller hardware, and
may be changed using the Flash memory configuration utility application.
Typically this value is set to achieve a desired minimum step size for a given
configuration (for instance, 20,000 steps per rev with a 2 mm pitch lead screw
gives a step size of 1 micron. Also this value should be set when using
encoders to ensure an appropriate ratio of micosteps to encoder steps, such as
2:1.

See Also OI_SetPitchXY, OI_GetAxisStepSize, OI_SetAxisStepSize

OI_GetAxisTravel

Syntax OI_API OI_GetAxisTravel (int AxisID, double* pdMin, double* pdMax)

Description Sets the.

Parameters AxisID The desired axis (see the introduction of this section
for the appropriate constants).

pdMin The returned value for the minimum available travel,
in microns.

pdMax The returned value for the maximum available travel,
in microns.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

OASIS4I DLL Manual Version 3.1.3 PAGE 69

Comments Each axis may have an associated range of travel, typically defined by the
distance found between the physical limits of travel. For instance, for the X and
Y axes, the range of travel is found automatically during the XY initialisation
process, which drives to each end of travel to locate the physical limit switches.
Once determined, the range of travel is defined to be the distance, in microns,
between the switches.

Use the OI_GetAxisTravel function to retrieve the current minimum and
maximum positions defined for a given axis

See Also OI_SetAxisInitMethod, OI_InitializeXY, OI_SetAxisTravel

OI_GetAxisUserLimits

Syntax OI_API OI_GetAxisUserLimits (int AxisID, double* pdMin, double* pdMax
)

Description Clears the user (software) limit values, i.e., makes them unset. The controller
will no longer obey the user limits once this function is called.

Parameters AxisID The desired axis (see the introduction of this section
for the appropriate constants).

pdMin The returned position of the minimum user limit.

pdMax The returned position of the maximum user limit.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments Each axis of the OASIS controller can be set to use software limits, specifyng a
minimum and maximum position to be used for the range of travel. When the
user software limits are set, the controller will obey these positions as if they
were physical limits of travel. The OI_GetAxisUserLimits function returns the
current user limit values.

See Also OI_SetAxisUserLimits, OI_ClearAxisUserLimits

OI_HaltAxis

Syntax OI_API OI_HaltAxis(int AxisID)

OI_API OI_HaltAxisEx(int nCard, int AxisID)

Description Stops the indicated axis.

Parameters nCard The zero-based index of the card to use, in a multi-
card configuration.

 Version 3.1.3 OASIS4I DLL Manual PAGE 70

AxisID The desired axis (see the introduction of this section
for the appropriate constants).

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_HaltAxis function will stop an axis using the currently defined
deceleration ramp for that axis. This will ensure positional accuracy is
maintained during the halt.

To immediately stop an axis, without using the deceleration ramp, use the
OI_EmergencyStopAll function.

See Also OI_DriveAxisContinuous, OI_HaltXY, OI_HaltZ, OI_HaltF,
OI_EmergencyStopAll

OI_LookupAxisSpeed

Syntax OI_API OI_LookupAxisSpeed(int AxisID, int nCruise, double* pdSpeed)

Description Returns the actual speed in mm/sec for a given cruise index.

Parameters AxisID The desired axis (see the introduction of this section
for the appropriate constants).

nCruise The cruise speed index.

pdSpeed The returned speed in mm/sec.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The cruise speed is an index into an acceleration LUT. To find the actual
speed for a given cruise index, use the OI_LookupAxisSpeed function.

See Also OI_LookupSpeedXY, OI_LookupSpeedZ, OI_LookupSpeedF,
OI_LookupSpeedT, OI_LookupSpeedS

OI_MoveAxis

Syntax OI_API OI_MoveAxis(int AxisID, double dValue, int nWait)

OI_API OI_MoveAxisEx(int nCard, int AxisID, double dValue, int nWait)

OASIS4I DLL Manual Version 3.1.3 PAGE 71

Description Move to the specified position, waiting for completion and settling as desired.

Parameters nCard The zero-based index of the OASIS controller to
use.

AxisID The desired axis (see the introduction of this section
for the appropriate constants).

dValue The desired position for the move. This value is
specified in microns.

nWait A flag indicating whether to wait before the move is
completed before returning.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments See the section “Waiting for Movement Completion” above for a description for
more information about the nWait parameter.

See the section “Return Values” above for a list of possible return codes.

See Also OI_MoveToXY, OI_MoveToZ, OI_MoveToF

.

OI_ReadAxis

Syntax OI_API OI_ReadAxis(int AxisID, double* pdValue)

OI_API OI_ReadAxisEx(int nCard, int AxisID, double* pdValue)

Description Read the current axis position.

Parameters nCard The zero-based index of the card to use, in a multi-
card configuration.

AxisID The desired axis (see the introduction of this section
for the appropriate constants).

pdValue Returns the current position, in microns.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments All coordinate values are returned in microns and are relative to the origin of the

 Version 3.1.3 OASIS4I DLL Manual PAGE 72

axis.

See Also OI_ReadXY, OI_ReadZ, OI_ReadF, OI_InitializeXY, OI_InitializeZ,
OI_InitializeF

OI_ReadAxisAtLimit

Syntax OI_API OI_ReadAxisAtLimit(int AxisID, BOOL* pbAtNegLimit, BOOL*
pbAtPosLimit)

Description Reads whether the axis is at the negative or positive limit of travel.

Parameters AxisID The desired axis (see the introduction of this section for
the appropriate constants).

pbAtNegLimit A flag indicating whether the axis is at the negative limit
of travel.

pbAtPosLimit A flag indicating whether the axis is at the positive limit
of travel.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the reason
for failure.

Comments The OI_ReadAxisAtLimit function is used to quickly determine with the axis is
located at either a user or physical limit of travel.

For a full report of the status of an axis, including whether the physical or user limit is
reached, use the OI_ReadAxisStatus function.

See Also OI_ReadAxisStatus, OI_ReadAxisMoving

OI_ReadAxisMoving

Syntax OI_API OI_ReadAxisMoving(int AxisID, BOOL* pbIsMoving)

Description Reads whether the axis is currently moving.

Parameters AxisID The desired axis (see the introduction of this section
for the appropriate constants).

pbIsMoving A flag indicating whether the axis is moving.

A TRUE value indicates the axis is in motion.

A FALSE value indicates the axis is stopped.

OASIS4I DLL Manual Version 3.1.3 PAGE 73

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments Use the OI_ReadAxisStatus function for a full report on the status of a given
axis, including whether the axis is moving, has been initialised, is at a user or
physical limit, and the limits have been set.

See Also OI_ReadAxisStatus

OI_ReadAxisRampValue

Syntax OI_API OI_ReadAxisRampValue(int AxisID, WORD wIndex, LPWORD
lpwInterval, LPWORD lpwStepSize)

Description Reads the acceleration ramp value at a given index.

Parameters AxisID The desired axis (see the introduction of this section
for the appropriate constants).

wIndex The ramp table index to be read.

lpwInterval The returned interval, in microseconds, during which
that index is applied.

lpwStepSize The returned step size, in microsteps.

Return
Value

Returns OI_OK if successful.

Returns OI_INVALIDARG if an out of range index value is passed.

Comments Each axis is assigned one of three pre-defined acceleration / deceleration ramp
tables in the OASIS hardware. The ramp table determines how acceleration
and deceleration are accomplished, and also specifies the actual speeds to be
used. The three pre-defined tables allow Normal, Slow, or Fast acceleration
profiles.

The ramp table holds 512 values, leading to valid indices of 0 to 511.

See Also OI_SetAxisRamp, OI_GetAxisRamp, OI_SetAxisCruise,
OI_GetAxisCruise, OI_SetCruiseXY, OI_SetCruiseZ, OI_SetCruiseF

OI_ReadAxisStatus

Syntax OI_API OI_ReadAxisStatus(int AxisID, LPWORD lpwStatus)

OI_API OI_ReadAxisStatusEx(int nCard, int AxisID, LPWORD lpwStatus)

 Version 3.1.3 OASIS4I DLL Manual PAGE 74

Description Reads the current status of an axis.

Parameters nCard The zero-based index of the card to use, in a multi-
card configuration.

lpwStatus Returns the axis status value.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The returned status value can be a bit wise combination of the following values:

Status Code Meaning

S_LIMIT_PHY_NEG The axis is at the negative physical limit

S_LIMIT_USR_NEG The axis is at the negative user limit

S_LIMIT_PHY_POS The axis is at the positive physical limit

S_LIMIT_USR_POS The axis is at the negative user limit

S_LIMIT_USR_NEG_SET The user negative limit has been set

S_LIMIT_USR_POS_SET The user positive limit has been set

S_INITIALIZED The axis has been initialised

S_DIRECTION If set, the direction of travel is negative

S_MOVING The axis is moving

S_MOTOR_DETECTED A motor was detected on the axis on
startup.

See Also OI_ReadStatusXY, OI_ReadStatusZ, OI_ReadStatusF

OI_SetAxisBacklash

Syntax OI_API OI_SetAxisBacklash(int AxisID, BOOL bEnabled)

Description Enables or disables backlash correction for a given axis.

Parameters AxisID The desired axis (see the introduction of this section
for the appropriate constants).

bEnabled Flag indicating whether backlash correction is
enabled.

OASIS4I DLL Manual Version 3.1.3 PAGE 75

A value of TRUE enables backlash correction.

A value of FALSE disables backlash correction.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments Backlash correction can improve positional accuracy by ensuring that each
movement always approaches the desired position from the same direction.

See Also OI_GetAxisBacklash

OI_SetAxisCruise

Syntax OI_API OI_SetAxisCruise(int AxisID, int nCruise)

OI_API OI_SetAxisCruiseEx(int nCard, int AxisID, int nCruise)

Description Sets the current maximum speed for a given axis.

Parameters nCard The zero-based index of the card to use, in a multi-
card configuration.

AxisID The desired axis (see the introduction of this section
for the appropriate constants).

nCruise The cruise speed table index.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments Each axis is assigned an associated ramp table in the OASIS hardware. This
ramp table determines how acceleration and deceleration are accomplished,
and also specifies the actual speeds to be used.

The ramp table has 512 entries, indexed from 0 to 511. The
OI_SetAxisCruise function specifies which index in the table will be used as
the maximum speed at which axis is moved.

See Also OI_GetAxisCruise, OI_SetAxisRamp, OI_ReadRampValue

OI_SetAxisEncoderEnabled

Syntax OI_API OI_SetAxisEncoderEnabled(int AxisID, BOOL bEnabled, BOOL

 Version 3.1.3 OASIS4I DLL Manual PAGE 76

bAutoCorrect)

Description Sets the pre-defined acceleration / deceleration ramp table to use.

Parameters AxisID The desired axis (see the introduction of this section
for the appropriate constants).

bEnabled Indicates whether the encoder counter is enabled.

bAutoCorrect Indicates whether moves are automatically
corrected to the nearest encoder position.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments See the OI_GetAxisEncoderEnabled function for more information on
encoder enabling.

See Also OI_GetAxisEncoderEnabled, OI_GetAxisEncoderFitted

OI_SetAxisInitMethod

Syntax OI_API OI_SetAxisInitMethod (int AxisID, int nMethod)

Description Sets the.

Parameters AxisID The desired axis (see the introduction of this section
for the appropriate constants).

nMethod The method to use for initialising the axis.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments Normally, an axis initialisation using limit switches is performed by driving to
each end of travel until the physical limit switch is encountered. Once both
limits have been encountered, the full range of travel and the current position
relative to these limits are known.

In some cases, it may be necessary or convenient to only use one set of limits
to initialise the stage. For instance, some XY stages only provide one set of
limits. Also, once the full range of stage travel is know, some time may be
saved by driving to only one set of limits, using the known travel to define the
soft limit settings at the opposite set of limits.

Use OI_SetAxisInitMethod to define how the axis is to determine the range of
travel, as specified in the table below. Note that in the current version, this

OASIS4I DLL Manual Version 3.1.3 PAGE 77

function is only relevant to the X and Y axis for stage initialisation.

nMethod Meaning

0 Normal, seek limit switches at each end of travel

1 Seek only the limit switch at the negative limit of
travel.

See Also OI_GetAxisInitMethod, OI_InitializeXY, OI_SetAxisTravel,
OI_GetAxisTravel

OI_SetAxisPitch

Syntax OI_API OI_SetAxisPitch(int AxisID, double dPitchMM)

OI_API OI_ SetAxisPitch (int nCard, int AxisID, double dPitchMM)

Description Sets the pre-defined acceleration / deceleration ramp table to use.

Parameters nCard The zero-based index of the card to use, in a multi-
card configuration.

AxisID The desired axis (see the introduction of this section
for the appropriate constants).

dPitchMM The axis pitch, in mm, i.e., the expected travel per
revolution of the motor.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments Calibration data for an axis is defined by the amount of travel expected for
either one step or for each turn of the motor. For the later, the pitch value is
used, defined in millimetres per turn.

See Also OI_GetAxisRamp, OI_SetAxisCruise, OI_GetAxisRampValue

OI_SetAxisRamp

Syntax OI_API OI_SetAxisRamp(int AxisID, int nRamp)

OI_API OI_SetAxisRampEx(int nCard, int AxisID, int nRamp)

Description Sets the pre-defined acceleration / deceleration ramp table to use.

 Version 3.1.3 OASIS4I DLL Manual PAGE 78

Parameters nCard The zero-based index of the card to use, in a multi-
card configuration.

AxisID The desired axis (see the introduction of this section
for the appropriate constants).

nRamp An identifier indicating the ramp table to use, as
described in the comments below.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments Each axis is assigned a ramp speed table that defines how the axis is to be
accelerated and decelerated, as well as the desired cruise speed.

Three pre-defined tables may be selected for a given axis, as indicated by the
nRamp parameter:

nRamp value Acceleration

0 Slow

1 Medium

2 Fast

See Also OI_GetAxisRamp, OI_SetAxisCruise, OI_GetAxisRampValue

OI_SetAxisSense

Syntax OI_API OI_SetAxisSense(int AxisID, int nSense)

Description Sets the axis drive sense, indicating the physical direction of travel for positive
or negative movements.

Parameters AxisID The desired axis (see the introduction of this section
for the appropriate constants).

nSense The desired direction of travel:

A value of zero indicates standard movement.

A non-zero value indicates reversed movement.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the

OASIS4I DLL Manual Version 3.1.3 PAGE 79

reason for failure.

Comments The motor driving a given axis can be driven in either a clockwise or counter-
clockwise motion for a given deflection direction of the joystick. The drive sense
parameter sets which direction of rotation is associated with a given joystick
deflection direction.

See Also OI_GetAxisSense

OI_SetAxisStepSize

Syntax OI_API OI_SetAxisStepSize(int AxisID, double dStepSize)

Description Sets the minimum step size for a given axis.

Parameters AxisID The desired axis (see the introduction of this section
for the appropriate constants).

dStepSize The size of each microstep, in microns.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments Internally, the OASIS controller maintains positional information in terms of
micro-steps. The OI_SetAxisStepSize function sets the actual distance in
microns for each micro-step. This calibrates the distance values for the axis.

See Also OI_SetPitchXY, OI_GetAxisStepSize

OI_SetAxisToDefaults

Syntax OI_API OI_SetAxisToDefaults(int AxisID)

Description Sets the parameters for a given axis to factory default settings.

Parameters AxisID The desired axis (see the introduction of this section
for the appropriate constants).

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments This function re-sets the values for acceleration ramp, cruise speed, step size,
backlash, and drive sense to default settings.

 Version 3.1.3 OASIS4I DLL Manual PAGE 80

The default settings are:

Setting Default Value

Acceleration Ramp 1 (Normal)

Cruise Speed 200

Step Size 0.078

Backlash FALSE

Drive Sense 0 (Normal)

See Also OI_SetAxisRamp, OI_SetAxisCruise, OI_SetAxisStepSize,
OI_SetAxisBacklash, OI_SetAxisSense

OI_SetAxisTravel

Syntax OI_API OI_SetAxisTravel (int AxisID, double dMin, double dMax)

Description Sets the.

Parameters AxisID The desired axis (see the introduction of this section
for the appropriate constants).

dMin The value for the minimum available travel, in
microns.

dMax The value for the maximum available travel, in
microns.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments Each axis may have an associated range of travel, typically defined by the
distance found between the physical limits of travel. For instance, for the X and
Y axes, the range of travel is found automatically during the XY initialisation
process, which drives to each end of travel to locate the physical limit switches.
Once determined, the range of travel is defined to be the distance, in microns,
between the switches.

The positions defining the ends of travel may also be set using the
OI_SetAxisTravel function. This function is particularly useful when using the
abbreviated XY initialisation process that uses only one set of limits at the
minimum range of travel then sets up the software limits based on the range of
travel for each axis.

OASIS4I DLL Manual Version 3.1.3 PAGE 81

See Also OI_SetAxisInitMethod, OI_InitializeXY, OI_GetAxisTravel

OI_SetAxisUserLimits

Syntax OI_API OI_SetAxisUserLimits (int AxisID, double dMin, double dMax)

Description Clears the user (software) limit values, i.e., makes them unset. The controller
will no longer obey the user limits once this function is called.

Parameters AxisID The desired axis (see the introduction of this section
for the appropriate constants).

dMin The position to use as the minimum user limit.

dMax The position to use as the maximum user limit.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments Each axis of the OASIS controller can be set to use software limits, specifyng a
minimum and maximum position to be used for the range of travel. When the
user software limits are set, the controller will obey these positions as if they
were physical limits of travel. The OI_SetAxisUserLimits function defines the
user limit values.

See Also OI_GetAxisUserLimits, OI_ClearAxisUserLimits

OI_StepAxis

Syntax OI_API OI_StepAxis(int AxisID, double dValue, int nWait)

OI_API OI_StepAxisEx(int nCard, int AxisID, double dValue, int nWait)

Description Moves the axis a relative distance from the current position, waiting for
completion if necessary.

Parameters nCard The zero-based index of the card to use, in a multi-
card configuration.

AxisID The desired axis (see the introduction of this section
for the appropriate constants).

dValue The relative distance to move, in microns.

nWait A flag indicating whether the function waits for the

 Version 3.1.3 OASIS4I DLL Manual PAGE 82

move to be completed before returning.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The distance travelled is specified in microns from the current position. Use
negative distance value to specify movements in the negative direction (as
defined by the current drive sense for the axis).

See Also OI_MoveAxis, OI_StepX, OI_StepY, OI_StepXY, OI_StepZ, OI_StepF

OI_StepAxisAbs

Syntax OI_API OI_StepAxisAbs(int AxisID, long lSteps, int nWait)

OI_API OI_StepAxisAbsEx(int nCard, int AxisID, long lSteps, int nWait)

Description Moves the axis a relative distance from the current position in microsteps,
waiting for completion if necessary.

Parameters nCard The zero-based index of the card to use, in a multi-
card configuration.

AxisID The desired axis (see the introduction of this section
for the appropriate constants).

lSteps The relative distance to move, in microsteps.

nWait A flag indicating whether the function waits for the
move to be completed before returning.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The distance travelled is specified in microsteps from the current position. Use
negative distance value to specify movements in the negative direction (as
defined by the current drive sense for the axis). Note that the actual distance
travelled will depend on both the microstepping resolution of the controller as
well as the mechanics of the axis, such as the leadscrew pitch. Use
OI_StepAxis to command a step in calibrated units, i.e., microns.

See Also OI_StepAxis, OI_MoveAxis, OI_StepX, OI_StepY, OI_StepXY, OI_StepZ,
OI_StepF

OASIS4I DLL Manual Version 3.1.3 PAGE 83

OI_WaitForAxisStopped

Syntax OI_API OI_WaitForAxisStopped(int AxisID)

OI_API OI_WaitForAxisStoppedEx(int nCard, int AxisID)

Description Waits for a given axis to stop moving before returning.

Parameters nCard The zero-based index of the card to use, in a multi-
card configuration.

AxisID The desired axis (see the introduction of this section
for the appropriate constants).

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments This function will continuously read the status of the specified axis until the axis
has stopped moving, the move times out, or the user aborts.

See Also OI_MoveAxis, OI_StepX, OI_StepY, OI_StepXY, OI_StepZ, OI_StepF

Simultaneous Three Axis Control
The following functions provide for simultaneous movements of multiple axes, for instance a
move to a given XYZ location where the three axes are driven simultaneously.

OI_DriveContinuousXYZ

Syntax OI_API OI_DriveContinuousXYZ(int nXSpeed, int nYSpeed, int nZSpeed)

Description Drives the X and Y axes at continuous speeds.

Parameters nXSpeed A signed integer indicating the direction and speed
at which to drive the X axis.

nYSpeed A signed integer indicating the direction and speed
at which to drive the Y axis.

nZSpeed A signed integer indicating the direction and speed
at which to drive the Z axis.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the

 Version 3.1.3 OASIS4I DLL Manual PAGE 84

reason for failure.

Comments The nXSpeed. nYSpeed and nZSpeed parameters specify the desired speed of
movement in half-steps per second.

The speed values are signed to indicate the direction of travel, i.e., a negative
speed causes a continuous drive in the negative direction, and may be any
integer in the range of –4096 to +4096.

To stop the continuous movement, use a corresponding call to the OI_HaltXY
and/or OI_HaltZ function.

Warning If the axis limits are not appropriately set for the physical limitations of the
microscope, continuous movement of an axis could cause the collision of
mechanical and optical components of the microscope system.

Caution should be taken by an application to ensure that appropriate safety
mechanisms are in place to prevent damage to the optical system. Usually this
means that safe user limits and/or limit switch positions for each axis have been
set so as to prevent movements that would result in collisions.

The OASIS DLL provides a safety function, OI_EmergencyStopAll, to
immediately stop all axes from being driven. An application should provide
facilities allowing the user to effectively access this function in all appropriate
situations in order to ensure hardware damage is prevented.

See Also OI_HaltXY, OI_HaltZ, OI_DriveAxisContinuous, OI_DriveContinuousXY,
OI_DriveContinuousZ

OI_HaltAllAxes

Syntax OI_API OI_HaltAllAxes(void)

Description Immediately stops all axes, using deceleration ramps.

Parameters None.

Return
Value

OI_OK if successful.

Comments This function uses deceleration ramps and therefore maintains positional
accuracy.

See Also OI_EmergencyStopAll, OI_HaltXY, OI_HaltZ, OI_HaltF

OI_MoveToXYZ

Syntax OI_API OI_MoveToXYZ(double dX, double dY, double dZ, int nWait)

OASIS4I DLL Manual Version 3.1.3 PAGE 85

Description Performs a simultaneous move to given X, Y and Z positions.

Parameters dX The desired X-axis position, in microns.

dY The desired Y-axis position, in microns.

dZ The desired Z-axis position, in microns.

nWait A flag indicating whether the function waits for the
move to be completed before returning.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_MoveToXYZ function performs a simultaneous 3-axis move. This
function for instance can be used to perform stage and focus relocation to a
given field of view, where the 3 coordinate values had been previously
recorded.

The nWait parameter tells the function whether to return immediately (i.e.,
nWait=0) or to wait until all the moves are complete (i.e., nWait is not zero).

If you wish to return immediately from the function, but later wish to wait until the
move is complete, use OI_WaitForStoppedXYZ. This is useful when using the
OASIS controller to multitask movements with other functions.

For instance, in an image analysis scanning application, you may wish to
acquire an image, then set the stage moving to a new XYZ location without
waiting. While the stage is moving, the PC CPU can carry on processing the
previously acquired image. Once that field has been processed, the stage may
be either still moving to the new location or already there. A call to
OI_WaitForStoppedXYZ can ensure that the new location is obtained for a
new field of view is acquired for processing.

See Also OI_MoveToXYZ_Auto, OI_MoveToXY, OI_MoveToZ,
OI_WaitForStoppedXYZ

OI_MoveToXYZ_Auto

Syntax OI_API OI_MoveToXYZ_Auto(double dX, double dY, double dZ, int nWait)

Description Performs a simultaneous move to given X, Y and Z positions, applying an
autofocus once there.

Parameters dX The desired X-axis position, in microns.

dY The desired Y-axis position, in microns.

 Version 3.1.3 OASIS4I DLL Manual PAGE 86

dZ The desired Z-axis position, in microns.

nWait A flag indicating whether the function waits for the
move to be completed before returning.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_MoveToXYZ_Auto function performs a 3-axis simultaneous move to a
given X, Y, and Z position. Once the position is reached, an automatic focus is
applied using the current automatic focus settings.

To test whether the move is complete, use the OI_WaitForStoppedXYZ
OI_WaitForAutoFocus functions.

NOTE: An OASIS-AF hardware module is required for automatic focus
operation.

See Also OI_MoveToXYZ, OI_WaitForStoppedXYZ, OI_SetAutoFocus

OI_ReadMaxMoveXYZ

Syntax OI_API OI_ ReadMaxMoveXYZ (LPDWORD lpdwXSteps, LPDWORD
lpdwXSteps, LPDWORD lpdwXSteps)

Description Retrieves the current pre-defined ramp table in use for a given axis.

Parameters lpdwXSteps Returns the maximum allowable move for the X
axis, as described in the Comments section below.

lpdwYSteps Returns the maximum allowable move for the Y
axis, as described in the Comments section below.

lpdwZSteps Returns the maximum allowable move for the Z
axis, as described in the Comments section below.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OASIS controller provides protection against extreme moves, e.g., moves
that involve an unusually large distance for a typical microscope automation
situation. If the user limits have not been properly defined, these moves could
cause physical damage due to collisions such as the objective lens striking the
specimen.

This protection is implemented as a maximum allowable move, defined in
microsteps. The OI_ReadMaxMoveXYZ function allows the current setting for

OASIS4I DLL Manual Version 3.1.3 PAGE 87

X, Y, and Z axes to be returned.

The values for the maximum move for each axis are stored in the OASIS flash
memory.

See Also OI_ReadMaxMoveXY, OI_ReadMaxMoveZ, OI_ReadMaxMoveF,
OI_GetAxisMaxMove

OI_ReadXYZ

Syntax OI_API OI_ReadXYZ(double* pdX, double* pdY, double* pdZ)

Description Reads the current position of the X, Y and Z axes.

Parameters pdX The current X-axis position, in microns.

pdY The current Y-axis position, in microns.

pdZ The current Z-axis position, in microns.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The coordinate values are specified in microns and are relative to the axis
origin, which is normally set during the initialisation process for each axis.

See Also OI_MoveToXYZ, OI_ReadXY, OI_ReadZ, OI_ReadF, OI_InitializeXY,
OI_InitializeZ

OI_SetPitchFromFlashXYZ

Syntax OI_API OI_SetPitchFromFlashXYZ()

Description Sets the pitch for the X, Y and Z axes based on the current pitch values found
in the OASIS flash memory.

Parameters None.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_SetPitchFromFlashXYZ function reads the current pitch definitions
from the flash memory and sets up the X, Y and Z axes according to those
values.

 Version 3.1.3 OASIS4I DLL Manual PAGE 88

As part of the system configuration, and in particular when encoders are
configured, the pitch value used for each axis is stored in flash memory. Axis
pitch information may also be set via software calls such as OI_SetPitchXY,
and such values will be stored in the system registry along with other software
settings such as the current cruise speed, acceleration ramp selection, etc.

The function OI_SetPitchFromFlashXYZ is used to ensure the software
settings for the pitch of the X, Y, and Z axes are setup to match the flash
memory values. This is useful for instance in applications that rely on the
OASIS flash configuration utility application to perform the system configuration,
where the 3rd party software may not include facilities for defining the pitch.

See Also OI_SetPitchXY, OI_SetPitchZ. OI_FlashReadAxisPitch

OI_SetPositionXYZ

Syntax OI_API OI_SetPositionXYZ(double dX, double dY, double dZ)

Description Sets the current position for the X, Y and Z axes.

Parameters dX The desired X-axis position, in microns.

dY The desired Y-axis position, in microns.

dZ The desired Z-axis position, in microns.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_SetPositionXYZ function resets the coordinate system for each of the
X, Y, and Z axes. The current X-Y-Z position is redefined to be the values
passed in dX, dY, and dZ.

Note that the physical positions of the limits for each axis are retained by this
function. That is, the OI_SetPositionXYZ function maintains the same relation
between the current position and the position of the negative and positive soft
limits for each axis. Therefore, the coordinates values associated for these
limits will be changed if a new position value is specified for the axis.

See Also OI_SetPositionXY, OI_SetPositionZ, OI_SetPositionF, OI_SetOriginXY,
OI_SetOriginZ, OI_SetOriginF, OI_InitializeXY, OI_InitializeZ, OI_InitializeF

OI_WaitForStoppedXYZ

Syntax OI_API OI_WaitForStoppedXYZ(int nXWait, int nYWait, int nZWait)

OASIS4I DLL Manual Version 3.1.3 PAGE 89

Description Waits for the X, Y, and Z axes to stop moving.

Parameters nXWait Test for X axis moving. Set to zero if X axis is not to
be tested. Set to one if X axis movement is to be
tested.

nYWait Test for Y axis moving. Set to zero if Y axis is not to
be tested. Set to one if Y axis movement is to be
tested.

nZWait Test for Z axis moving. Set to zero if Z axis is not to
be tested. Set to one if Z axis movement is to be
tested.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_WaitForStoppedXYZ function is useful after any move functions are
called with zero wait parameters. OI_WaitForStoppedXYZ will not return until
the indicated axes have completed their moves.

See Also OI_WaitForAutoFocus

XY Stage Control
Motorised stage control is a primary application for the OASIS controller. The following
functions allow simplified control of XY stages.

OI_ClearUserLimitsXY

Syntax OI_API OI_ClearUserLimitsXY(void)

Description Clears the user limits for the X and Y axes.

Parameters None.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The positive and negative software limits for the X and Y axes will be cleared by
this function. Only a physical limit will restrict the range of travel.

 Version 3.1.3 OASIS4I DLL Manual PAGE 90

See Also OI_SetUserLimitsXY, OI_InitializeXY

OI_DriveContinuousXY

Syntax OI_API OI_DriveContinuousXY(int nXSpeed, int nYSpeed)

Description Drives the X and Y axes at continuous speeds.

Parameters nXSpeed A signed integer indicating the direction and speed
at which to drive the X axis.

nYSpeed A signed integer indicating the direction and speed
at which to drive the Y axis.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The nXSpeed and nYSpeed parameters specify the desired speed of
movement in half-steps per second.

The speed values are signed to indicate the direction of travel, i.e., a negative
speed causes a continuous drive in the negative direction, and may be any
integer in the range of –4096 to +4096.

To stop the continuous movement, use a corresponding call to OI_HaltXY
function.

Warning If the axis limits are not appropriately set for the physical limitations of the
microscope, continuous movement of an axis could cause the collision of
mechanical and optical components of the microscope system.

Caution should be taken by an application to ensure that appropriate safety
mechanisms are in place to prevent damage to the optical system. Usually this
means that safe user limits and/or limit switch positions for each axis have been
set so as to prevent movements that would result in collisions.

The OASIS DLL provides a safety function, OI_EmergencyStopAll, to
immediately stop all axes from being driven. An application should provide
facilities allowing the user to effectively access this function in all appropriate
situations in order to ensure hardware damage is prevented.

See Also OI_HaltXY, OI_DriveAxisContinuous, OI_DriveContinuousZ,
OI_DriveContinuousF

OASIS4I DLL Manual Version 3.1.3 PAGE 91

OI_GetBacklashXY

Syntax OI_API OI_GetBacklashXY(double* pdX, double* pdY)

Description Reads the current X-Y backlash correction information of the stage.

Parameters pdX The current X-axis backlash correction, in microns.

pdY The current Y-axis backlash, in microns.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments Backlash correction may be employed by the controller to help reduce
mechanical inaccuracies due to direction changes.

If the stage is configured as the OASIS controller (default), the values returned
are the current calibrated settings from the OASIS card’s flash memory.

If the stage is configured as the Leica IsoPro, the returned values are the
interpolated backlash corrections for the current XY position.

See Also OI_GetBacklashZ

OI_GetCruiseXY

Syntax OI_API OI_GetCruiseXY(int* pnXCruise, int* pnYCruise)

Description Retrieves the current cruise speed settings for the X and Y axes.

Parameters pnXCruise The returned X axis cruise speed index.

pnYCruise The returned Y axis cruise speed index.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments See the Comments for OI_SetCruiseXY for more information regarding cruise
speeds.

See Also OI_SetCruiseXY, OI_SetAxisCruise, OI_GetAxisCruise, OI_SetCruiseZ,
OI_SetCruiseF

 Version 3.1.3 OASIS4I DLL Manual PAGE 92

OI_GetDriveSenseXY

Syntax OI_API OI_GetDriveSenseXY(int* pnXDir, int* pnYDir)

Description Retrieves the current direction of rotation settings for the X and Y axes.

Parameters pnXDir The returned X axis drive sense.

pnYDir The returned Y axis drive sense.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments See the Comments for OI_SetDriveSenseXY for further information about
drive sense.

See Also OI_SetDriveSenseXY, OI_SetAxisSense, OI_GetAxisSense

OI_GetFullTravelXY

Syntax OI_API OI_GetFullTravelXY(double* pdXMin, double* pdXMax, double*
pdYMin, double* pdYmax, BOOL* pbInit)

Description Returns the full available travel of the XY stage.

Parameters pdXMin The returned X axis minimum value

pdXMax The returned X axis maximum value

pdYMin The returned Y axis minimum value

pdYMax The returned Y axis maximum value

pbInit Flag indicating if the stage has been initialised
before.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments Usually XY stages use physical limit switches to define the limits of travel. The
OI_InitializeXY function is used to automatically drive to these limits, so that the
full range of travel may be measured. The OI_GetFullTravelXY function
returns the position of the limit switches, with respect to the current stage origin.

The pbInit parameter indicates whether the stage has ever been initialised. If it
has not, the full limits of travel are undefined.

OASIS4I DLL Manual Version 3.1.3 PAGE 93

See Also OI_InitializeXY

OI_GetPitchXY

Syntax OI_API OI_GetPitchXY(double* pdXPitch, double* pdYPitch)

Description Returns the current lead screw pitch settings for the X and Y axes.

Parameters pdXPitch The returned X axis lead screw pitch, in millimetres.

pdYPitch The returned Y axis lead screw pitch, in millimetres.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments See the Comments for the OI_SetPitchXY function for more information about
lead screw pitches.

See Also OI_SetPitchXY, OI_SetAxisStepSize, OI_GetAxisStepSize

OI_GetRampXY

Syntax OI_API OI_GetRampXY(int* pnXRamp, int* pnYRamp)

Description Retrieves the current ramp in use by the X and Y axes.

Parameters pnXRamp The returned current X-axis ramp, as described in
the Comments below.

pnYRamp The returned current Y-axis ramp, as described in
the Comments below.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments Three pre-defined tables may be selected for a given axis, as indicated by the
nRamp parameter:

nRamp value Acceleration

0 Slow

1 Medium

 Version 3.1.3 OASIS4I DLL Manual PAGE 94

2 Fast

See Also OI_SetRampXY, OI_SetAxisRamp, OI_GetAxisRamp

OI_GetSpeedXY

Syntax OI_API OI_GetSpeedXY(double* pdXSpeed, double* pnYSpeed)

Description Retrieves the current speeds, in mm per second, in use by the X and Y axes.

Parameters pdXSpeed The returned current X-axis speed, in mm/s.

pdYSpeed The returned current Y-axis speed, in mm/s.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_GetSpeedXY returns the actual drive speed of the stage corresponding
to the cruise speed values. The speed is derived from calibration values (i.e.,
the stage leadscrew pitch), the current cruise speed values, and is returned in
mm per second.

See Also OI_SelectSpeedXY, OI_LookupSpeedXY

OI_GetUserLimitGuardDistanceXY

Syntax OI_API OI_GetUserLimitGuardDistanceXY (double* pdXDistanceMicrons,
double* pdYDistanceMicrons)

Description Sets the.

Parameters pdXDistanceMicrons The returned value for the X-axis physical to
software limit buffer region, in microns.

pdYDistanceMicrons The returned value for the Y-axis physical to
software limit buffer region, in microns

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments See the OI_SetUserLimitGuardDistanceXY for more information regarding
user vs. physical limit setup.

OASIS4I DLL Manual Version 3.1.3 PAGE 95

See Also OI_SetUserLimitGuardDistanceXY, OI_SetAxisInitMethod, OI_InitializeXY,
OI_GetAxisTravel

OI_GetUserLimitsXY

Syntax OI_API OI_GetUserLimitsXY(double* pdXMin, double* pdXMax, double*
pdYMin, double* pdYMax)

Description Retrieves the current user limit settings for the X and Y axes.

Parameters pdXMin The minimum coordinate for the X axis, in microns.

pdXMax The maximum coordinate for the X axis, in microns.

pdYMin The minimum coordinate for the Y axis, in microns.

pdYMax The maximum coordinate for the Y axis, in microns.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments See the Comments for the OI_SetUserLimitsXY for more information about
user limits.

See Also OI_SetUserLimitsXY, OI_InitializeXY

OI_HaltXY

Syntax OI_API OI_HaltXY(void)

Description Stops any motion of the X and Y axes.

Parameters None.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_Halt function uses the currently defined deceleration ramp to achieve
an accurate halt of any motion. This preserves positional accuracy.

To immediately stop all axes from moving, use the OI_EmergencyStopAll
function.

 Version 3.1.3 OASIS4I DLL Manual PAGE 96

See Also OI_EmergencyStopAll, OI_HaltAxis, OI_HaltZ, OI_HaltF,
OI_DriveContinuousXY

OI_InitializeXY

Syntax OI_API OI_InitializeXY(void)

Description Initialises the stage by automatically finding limit switches and positioning the
stage to the centre of the available range of travel in X and Y.

Parameters None.

Return
Value

OI_OK if successful.

OI_ABORT will be returned if the user aborts the initialisation by pressing the
ESC key or CTRL-C during the procedure.

Comments Stage initialisation is necessary for determining the precise range of travel
available in the X and Y directions of travel.

To prevent over-travel into the mechanical ends of the lead screws, stages are
fitted with limit switches that give a signal to the controller that the end of travel
has been reached. The OASIS controller senses these signals, and these can
be used to allow the controller to automatically determine the available range of
travel on a microscope.

The initialisation procedure is defined as:

1. Move towards the negative direction until the negative physical limit switches
for the X and Y axes are found;

2. Move towards the positive direction until the positive physical limit switches
for the X and Y axes are found;

3. Move to the centre of the stage, defined as the midpoint between the found
limit positions.

This function automatically sets the user limits to be just inside the physical limit
switch positions and the stage [X,Y] = [0,0] to be at the negative user limit.

Note that some stages are fitted with adjustable limit switches, and any change
to the position of these switches will require another stage initialisation.

See Also OI_InitializeZ, OI_InitializeF

OI_LookupSpeedXY

Syntax OI_API OI_LookupSpeedXY(int nCruiseX, int nCruiseY, double*

OASIS4I DLL Manual Version 3.1.3 PAGE 97

pdSpeedX, double* pdSpeedY)

Description Retrieves the speeds, in mm per second, corresponding to a given cruise value
for the Z axis.

Parameters nCruiseX, nCruiseY The cruise speeds of the X and Y axes for which the
actual speed is desired.

pdSpeedX,
pdSpeedY

The returned X and Y axes speeds, in mm/s, for the
given cruise speeds.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_LookupSpeedXY returns the actual drive speeds of the X and Y axes
corresponding to a given cruise speed. The speed is derived from calibration
value (i.e., the leadscrew pitch values), the current cruise speed values, and is
returned in mm per second.

Unlike the OI_GetSpeedXY function, which returns the speed corresponding to
the currently selected cruise speeds, the OI_LookupSpeedXY function returns
the speeds for a specified cruise value.

See Also OI_GetSpeedXY, OI_SelectSpeedXY, OI_GetCruiseXY

OI_MoveToXY

Syntax OI_API OI_MoveToXY(double dX, double dY, int nWait)

Description Moves to the specified X-Y position.

Parameters dX The desired X-axis position, in microns.

dY The desired Y-axis position, in microns.

nWait A flag indicating whether the function waits for the
move to be completed before returning.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The coordinate values are specified in microns and are relative to the axis
origin, which is normally set during the initialisation process for each axis.

See Also OI_ReadXY, OI_StepXY, OI_StepX, OI_StepY, OI_WaitForStoppedXYZ

 Version 3.1.3 OASIS4I DLL Manual PAGE 98

OI_MoveToXY_Abs

Syntax OI_API OI_MoveToXY_Abs(long lX, long lY, int nWait)

Description Moves to the specified X-Y position, in microsteps.

Parameters lX The desired X-axis position, in microsteps.

lY The desired Y-axis position, in microsteps.

nWait A flag indicating whether the function waits for the
move to be completed before returning.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The coordinate values are specified in microsteps and are relative to the axis
origin, which is normally set during the initialisation process for each axis.

See Also OI_ReadXY_Abs, OI_MoveToXY, OI_ReadXY, OI_StepXY, OI_StepX,
OI_StepY, OI_WaitForStoppedXYZ

OI_MoveToXY_Auto

Syntax OI_API OI_MoveToXY_Auto(double dX, double dY, int nWait)

Description Moves to the specified X-Y position, followed by an automatic focus.

Parameters dX The desired X-axis position, in microns.

dY The desired Y-axis position, in microns.

nWait A flag indicating whether the function waits for the
move to be completed before returning.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_MoveToXY_Auto function performs a 2-axis simultaneous move to a
given X-Y position. Once the position is reached, an automatic focus is applied
using the current automatic focus settings.

To test whether the move is complete, use the OI_WaitForStoppedXYZ
OI_WaitForAutoFocus functions.

NOTE: An OASIS-AF hardware module is required for automatic focus

OASIS4I DLL Manual Version 3.1.3 PAGE 99

operation.

See Also OI_MoveToXY, OI_MoveToXYZ_Auto, OI_WaitForStoppedXYZ,
OI_WaitForAutoFocus

OI_ReadLimitAlarmsXY

Syntax OI_API OI_ReadLimitAlarmsXY(int* pnXNeg, int* pnXPos, int* pnYNeg,
int* pnYPos)

Description Reads the current status of the X and Y axes limit alarms.

Parameters pnXNeg Status of the negative limit for the X axis.

pnXPos Status of the positive limit for the X axis.

pnYNeg Status of the negative limit for the Y axis.

pnYPos Status of the positive limit for the Y axis.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_ReadLimitAlarmsXY functions tells you whether the X or Y axis is
currently at a user (software) or hardware limit.

The returned status values in the arguments can be the following:

Status Code Meaning

0 The axis is not at the limit

1 The axis is at a user limit

2 The axis is at a hardware limit

3 The axis is at both a user and a hardware
limit

See Also OI_ReadStatusXY, OI_ReadLimitAlarmsZ, OI_ReadLimitAlarmsF

OI_ReadStatusXY

Syntax OI_API OI_ReadStatusXY(LPWORD lpwXStatus, LPWORD lpwYStatus)

 Version 3.1.3 OASIS4I DLL Manual PAGE 100

Description Reads the current status of the X and Y axes.

Parameters lpwXStatus Returns the X axis status value.

lpwYStatus Returns the Y axis status value.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The returned status value can be a combination of the following values:

Status Code Meaning

S_LIMIT_PHY_NEG The axis is at the negative physical limit

S_LIMIT_USR_NEG The axis is at the negative user limit

S_LIMIT_PHY_POS The axis is at the positive physical limit

S_LIMIT_USR_POS The axis is at the negative user limit

S_LIMIT_USR_NEG_SET The user negative limit has been set

S_LIMIT_USR_POS_SET The user positive limit has been set

S_INITIALIZED The axis has been initialised

S_DIRECTION If set, the direction of travel is negative

S_MOVING The axis is moving

See Also OI_ReadStatusZ, OI_ReadStatusF

OI_ReadXY

Syntax OI_API OI_ReadXY(double* pdX, double* pdY)

Description Reads the current X-Y position of the stage.

Parameters pdX The current X-axis position, in microns.

pdY The current Y-axis position, in microns.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

OASIS4I DLL Manual Version 3.1.3 PAGE 101

Comments The coordinate values are returned in microns and are relative to the axis
origin, which is normally set during the initialisation process for each axis.

See Also OI_MoveToXY, OI_ReadZ, OI_ReadF, OI_ReadAxis

OI_ReadXY_Abs

Syntax OI_API OI_ReadXY_Abs(long* plX, long* plY)

Description Reads the current X-Y position of the stage, in microsteps.

Parameters plX The current X-axis position, in microsteps.

plY The current Y-axis position, in microsteps.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The coordinate values are returned in microsteps and are relative to the axis
origin, which is normally set during the initialisation process for each axis.

See Also OI_ReadXY, OI_MoveToXY, OI_ReadZ, OI_ReadF, OI_ReadAxis

OI_SelectSpeedXY

Syntax OI_API OI_SelectSpeedXY(double dXmmPerSec, double dYmmPerSec,
int nFlags)

Description Automatically selects the cruise speed corresponding to a desired speed in mm
per second.

Parameters dXmmPerSec,
dYmmPerSec

The desired speeds for the X and Y axis, in mm per
second.

nFlags Specifies how the search is performed, as
described in the Comments below.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_SelectSpeedXY function is used to automatically set the stage cruise
speeds to specified actual speed targets, in mm per second.

 Version 3.1.3 OASIS4I DLL Manual PAGE 102

The nFlags parameter specifies how the search is to be carried out:

nFlags value Meaning

0 A cruise value is found that
gives an actual speed as
close to, but not exceeding,
the desired speed.

1 A cruise value is found that
gives the closest actual
speed to the desired speed,
including speeds that are
greater than the desired
speed.

The net effect of the OI_SelectSpeedXY function is equivalent to a call to
OI_SetCruiseXY with parameters that give the best match to the desired actual
speeds.

Note that you may use the OI_GetSpeedXY and the OI_GetCruiseXY to read
the actual speeds and cruise values that have been selected.

See Also OI_GetSpeedXY, OI_GetCruiseXY, OI_SetCruiseXY

OI_SetCruiseXY

Syntax OI_API OI_SetCruiseXY(int nXCruise, int nYCruise)

Description Sets the cruising speed for the X and Y axes.

Parameters nXCruise The X axis cruise speed index.

nYCruise The Y axis cruise speed index.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The cruise speed is specified via the maximum index to be used in the currently
defined acceleration / deceleration ramp for a given axis.

Each axis is assigned an associated ramp table in the OASIS hardware. This
ramp table determines how acceleration and deceleration are accomplished,
and also specifies the actual speeds to be used.

The ramp table has 512 entries, indexed from 0 to 511. The OI_SetCruiseXY
function specifies which index in the table will be used as the maximum speed
at which the X and Y axes are moved.

OASIS4I DLL Manual Version 3.1.3 PAGE 103

See Also OI_GetCruiseXY, OI_SetAxisCruise, OI_SetCruiseZ, OI_SetCruiseF,
OI_SetRampXY

OI_SetDriveSenseXY

Syntax OI_API OI_SetDriveSenseXY(int nXDir, int nYDir)

Description Sets the direction of rotation for movements of the X and Y axes.

Parameters nXDir The X axis drive sense.

nYDir The Y axis drive sense.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The motor driving a given axis can be driven in either a clockwise or counter-
clockwise motion. The drive sense parameter sets which direction of rotation is
associated with positive valued movements.

A value of zero (0) indicates standard movement.

A non-zero value indicates reversed movement.

See Also OI_GetDriveSenseXY, OI_SetAxisSense, OI_GetAxisSense

OI_SetOriginXY

Syntax OI_API OI_SetOriginXY(void)

Description Sets the current XY position to be the origin (e.g., 0,0).

Parameters None.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_SetOriginXY function is used to establish the origin of the overall,
micron-based coordinate system of the XY stage.

The origin is defined to be position [X=0,Y=0], and all stage positions are made
relative to this origin.

By default, when the OI_InitializeXY function is used to initialise the range of

 Version 3.1.3 OASIS4I DLL Manual PAGE 104

travel available to the stage, the origin is set just inside of the XY negative limit
switches, at the negative user limits automatically set by the OI_InitializeXY
function.

The OI_SetOriginXY function may be used to set the stage origin to another
user-defined position.

Warning The OI_SetOriginXY function re-sets the entire coordinate system for the
stage. After a call to this function, previously stored position values may no
longer correspond to their associated physical stage positions.

See Also OI_InitializeXY

OI_SetPitchXY

Syntax OI_API OI_SetPitchXY(double dXPitch, double dYPitch)

Description Sets the pitch of the lead screws for the X and Y axes.

Parameters dXPitch The X axis lead screw pitch, in millimetres.

dYPitch The Y axis lead screw pitch, in millimetres.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_SetPitchXY function is used to internally calculate the actual size of
each micro-step. Typically, there are 12,800 micro-steps per revolution of the
lead screw. From the supplied lead screw pitches, the OI_SetPitchXY function
will automatically calculate this minimum step size for you.

NOTE: All micron to micro-step conversions use these values for their
calibration. It is critical that these values be correctly supplied in order to ensure
accurate stage movement.

To retrieve the current step size value, you may use the OI_GetAxisStepSize
function.

Consult the specifications for your specific stage to determine the actual lead
screw pitches.

See Also OI_GetPitchXY, OI_SetAxisStepSize, OI_GetAxisStepSize

OI_SetPositionXY

Syntax OI_API OI_SetPositionXY(double dX, double dY)

OASIS4I DLL Manual Version 3.1.3 PAGE 105

Description Sets the current position for the X and Y axes.

Parameters dX The desired X-axis position, in microns.

dY The desired Y-axis position, in microns.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_SetPositionXY function resets the coordinate system for each of the X
and Y axes. The current X and Y positions are redefined to be the values
passed in dX and dY.

Note that the physical positions of the limits for each axis are retained by this
function. That is, the OI_SetPositionXY function maintains the same relation
between the current position and the position of the negative and positive soft
limits for each axis. Therefore, the coordinates values associated for these
limits will be changed if a new position value is specified for the axis.

See Also OI_SetPositionXYZ, OI_SetPositionZ, OI_SetPositionF, OI_SetOriginXY,
OI_SetOriginZ, OI_SetOriginF, OI_InitializeXY, OI_InitializeZ, OI_InitializeF

OI_SetRampXY

Syntax OI_API OI_SetRampXY(int nXRamp, int nYRamp)

Description Sets which pre-defined acceleration / deceleration ramp is used for the X and Y
axes.

Parameters nXRamp The X-axis ramp code.

nYRamp The Y-axis ramp code.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments Three pre-defined tables may be selected for a given axis, as indicated by the
nRamp parameter:

nRamp value Acceleration

0 Slow

1 Medium

2 Fast

 Version 3.1.3 OASIS4I DLL Manual PAGE 106

See Also OI_GetRampXY, OI_SetAxisRamp, OI_GetAxisRamp

OI_SetUserLimitGuardDistanceXY

Syntax OI_API OI_SetUserLimitGuardDistanceXY(double dXDistanceMicrons,
double dYDistanceMicrons)

Description Sets the.

Parameters dXDistanceMicrons The value for the desired distance between the X-
axis physical and soft limits, in microns, to be used
when initialising the XY stage. Set to a negative
value for automatic setting based on the current
cruise speed and ramp.

dYDistanceMicrons The value for the desired distance between the Y-
axis physical and soft limits, in microns, to be used
when initialising the XY stage. Set to a negative
value for automatic setting based on the current
cruise speed and ramp.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments When initialising the XY stage, the OASIS DLL uses the detected physical limit
switch positions at each end of travel to set up the distance between the
detected physical limit position and the software limits. This distance provides a
“guard” buffer region allowing the OASIS controller to properly ramp to a stop
once the software limit it detected before actually encountering the physical
limit.

By default, the guard distance between the software and physical limits is set
automatically using the current cruise speed and ramp values for the X and Y
axes to ensure a proper buffer for ramping down. However, the
OI_SetUserLimitGuardDistanceXY function may be used to define your own
specific guard region values for X and Y.

To enable automatic detection of the guard region, use a negative value for the
distance for the desired axis.

See Also OI_GetUserLimitGuardDistanceXY, OI_SetAxisInitMethod, OI_InitializeXY,
OI_GetAxisTravel

OI_SetUserLimitsXY

Syntax OI_API OI_SetUserLimitsXY(double dXMin, double dXMax, double dYMin,

OASIS4I DLL Manual Version 3.1.3 PAGE 107

double dYMax)

Description Sets user-defined limits of travel along the X and Y axes.

Parameters dXMin The minimum coordinate for the X axis, in microns.

dXMax The maximum coordinate for the X axis, in microns.

dYMin The minimum coordinate for the Y axis, in microns.

dYMax The maximum coordinate for the Y axis, in microns.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_SetUserLimitsXY functions allows “soft” limits to be set at any point
along the X and Y axes. Once the soft limits are set, the OASIS controller will
not allow any movement outside of these limit values.

Note that the soft limits are distinct from the physical limit switches of the stage.
The “hard” physical limit switches provide direct electronic feedback to the
OASIS controller indicating the physical limits of travel available for the stage.

When using the OI_InitializeXY function to initialise the range of travel and
position of the stage, the OASIS controller automatically sets the X and Y user
limits to positions a short distance inside the actual physical limits. This
distance is matched to the current deceleration ramp to prevent driving of the
stage into the physical limit switches during normal operation.

See Also OI_GetUserLimitsXY, OI_InitializeXY, OI_SetRampXY

OI_StepX

Syntax OI_API OI_StepX(double dXDistance, int nWait)

Description Moves a relative distance along the X axis.

Parameters dXDistance The desired distance to move, in microns.

nWait A flag indicating whether the function waits for the
move to be completed before returning.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The dXDistance parameter should be negative for moves in the negative
direction.

 Version 3.1.3 OASIS4I DLL Manual PAGE 108

See Also OI_StepY, OI_StepXY, OI_MoveToXY, OI_StepAxis,
OI_WaitForStoppedXYZ

OI_StepXY

Syntax OI_API OI_StepX(double dXDistance, double dYDistance, int nWait)

Description Moves a relative distance along the X and Y axes.

Parameters dXDistance The desired distance to move the X axis, in microns.

dYDistance The desired distance to move the Y axis, in microns.

nWait A flag indicating whether the function waits for the
move to be completed before returning.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The dXDistance or dYDistance parameter should be negative for moves in the
negative direction.

See Also OI_StepX, OI_StepY, OI_MoveToXY, OI_StepAxis,
OI_WaitForStoppedXYZ

OI_StepY

Syntax OI_API OI_StepY(double dYDistance, int nWait)

Description Moves a relative distance along the Y axis.

Parameters dYDistance The desired distance to move, in microns.

nWait A flag indicating whether the function waits for the
move to be completed before returning.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The dYDistance parameter should be negative for moves in the negative
direction.

See Also OI_StepX, OI_StepXY, OI_MoveToXY, OI_StepAxis,
OI_WaitForStoppedXYZ

OASIS4I DLL Manual Version 3.1.3 PAGE 109

OI_WaitForStoppedXY

Syntax OI_API OI_WaitForStoppedXY()

Description Waits for the X and Y axes to stop moving.

Parameters None.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_WaitForStoppedXY function is useful after any XY stage move
functions that are called with zero wait parameters. OI_WaitForStoppedXY
will not return until the indicated axes have completed their moves or have
timed out waiting.

See Also OI_WaitForStoppedXYZ, OI_WaitForStoppedZ, OI_WaitForStoppedF,
OI_WaitForAutoFocus, OI_SetDefaultAbortKeys

Z / Focus Control

OI_ClearUserLimitsZ

Syntax OI_API OI_ClearUserLimitsZ(void)

Description Clears the user limits for the Z axis.

Parameters None.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The positive and negative software limits for the Z axis will be cleared by this
function. Only a physical limit will restrict the range of travel.

See Also OI_SetUserLimitsZ, OI_InitializeZ

 Version 3.1.3 OASIS4I DLL Manual PAGE 110

OI_CloseMouseWheelForFocus

Syntax OI_API OI_CloseMouseWheelForFocus(void)

Description Disables mouse wheel control of the focus.

Parameters None.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments See the OI_OpenMouseWheelForFocus function for more information about
mouse wheel control of the focus.

See Also OI_OpenMouseWheelForFocus

OI_DriveContinuousZ

Syntax OI_API OI_DriveContinuousZ(int nSpeed)

Description Drives the Z axis at a continuous speed.

Parameters nSpeed A signed integer indicating the direction and speed
at which to drive the Z axis.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The nSpeed parameter specifies the desired speed of movement in half-steps
per second.

The speed values are signed to indicate the direction of travel, i.e., a negative
speed causes a continuous drive in the negative direction, and may be any
integer in the range of –4096 to +4096.

To stop the continuous movement, use a corresponding call to either the
OI_HaltZ or the OI_EmergencyStopAll function.

Warning If the Z axis limits are not appropriately set for a microscope focus mechanism,
continuous movement in Z could drive the specimen up into the objective lens
or down into the condenser optics.

Caution should be taken by an application to ensure that appropriate safety
mechanisms are in place to prevent damage to the optical system. Usually this
means that safe user limits for the Z axis have been set so as to prevent Z
movements that would result in collision of the stage and/or specimen with
other components of the optical system.

OASIS4I DLL Manual Version 3.1.3 PAGE 111

The OASIS DLL provides a safety function, OI_EmergencyStopAll, to
immediately stop all axes from being driven. An application should provide
facilities allowing the user to effectively access this function in all appropriate
situations in order to ensure hardware damage is prevented.

See Also OI_HaltZ, OI_EmergencyStopAll

OI_GetBacklashZ

Syntax OI_API OI_GetBacklashZ(double* pdZ,)

Description Reads the current Z backlash correction information of the focus.

Parameters pdZ The current Z-axis backlash correction, in microns.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments Backlash correction can be employed by the controller to help reduce
mechanical inaccuracies due to direction changes.

The values are the current settings from the OASIS card’s flash memory,
calibrated to microns.

See Also OI_GetBacklashZ

OI_GetCruiseZ

Syntax OI_API OI_GetCruiseZ(int* pnZCruise)

Description Retrieves the current Z axis cruise speed index.

Parameters pnZCruise The returned Z axis cruise speed index.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments See the Comments for the OI_SetCruiseZ function for more information about
cruise speeds.

See Also OI_SetCruiseZ

 Version 3.1.3 OASIS4I DLL Manual PAGE 112

OI_GetDriveSenseZ

Syntax OI_API OI_GetDriveSenseZ(int* pnZDir)

Description Retrieves the current direction of rotation setting for the Z axis.

Parameters pnZDir The returned Z axis drive sense.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments See the Comments for OI_SetDriveSenseZ for more information about the
values for drive sense.

See Also OI_SetDriveSenseZ, OI_GetAxisSense

OI_GetMouseWheelPars

Syntax OI_API OI_GetMouseWheelPars(double *pdStepSize, int *pnSpeed)

Description Retrieves the current settings for control of the Z axis using the mouse wheel.

Parameters pdStepSize The step size, in microns, for each step of the
mouse wheel.

pnSpeed The desired maximum speed of movement to
continuous driving when the mouse wheel is
pressed.

Return
Value

OI_OK if successful.

Comments See the OI_SetMouseWheelPars function for more information about the
mouse wheel parameters.

See Also OI_SetMouseWheelPars, OI_OpenMouseWheelForFocus ,
OI_CloseMouseWheelForFocus

OI_GetMouseWheelZ

Syntax OI_API OI_GetMouseWheelZ(BOOL *pbEnabled)

Description Retrieves whether mouse wheel control of the Z axis is enabled.

OASIS4I DLL Manual Version 3.1.3 PAGE 113

Parameters pbEnabled Returns TRUE if enable, FALSE if disabled.

Return
Value

OI_OK if successful.

Comments See the OI_SetMouseWheelZ function for more information about
enabling/disabling mouse wheel control of the Z axis.

See Also OI_GetMouseWheelPars, OI_OpenMouseWheelForFocus ,
OI_CloseMouseWheelForFocus

OI_GetRampZ

Syntax OI_API OI_GetRampZ(int* pnZRamp)

Description Retrieves which pre-defined acceleration / deceleration ramp is in use for the Z
axis.

Parameters pnZRamp Indicates which pre-defined ramp is currently in use
for the Z axis.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments Three pre-defined tables may be selected for a given axis, as indicated by the
nRamp parameter:

nRamp value Acceleration

0 Slow

1 Medium

2 Fast

See Also OI_SetRampZ, OI_SetAxisRamp

OI_GetSpeedZ

Syntax OI_API OI_GetSpeedZ(double* pdSpeed)

Description Retrieves the current speeds, in mm per second, in use by the Z axis.

Parameters pdSpeed The returned current Z-axis speed, in mm/s.

 Version 3.1.3 OASIS4I DLL Manual PAGE 114

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_GetSpeedZ returns the actual drive speed of the focus control
corresponding to the cruise speed values. The speed is derived from
calibration value (i.e., the focus pitch or microns per step size), the current
cruise speed value, and is returned in mm per second.

See Also OI_SelectSpeedZ, OI_LookupSpeedZ

OI_GetUserLimitsZ

Syntax OI_API OI_GetUserLimitsZ(double* pdZMin, double* pdZMax)

Description Retrieves the current user limit settings for the Z axis.

Parameters pdZMin The minimum coordinate for the Z axis, in microns.

pdZMax The maximum coordinate for the Z axis, in microns.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments See the Comments for the OI_SetUserLimitsZ for more information about user
limits.

See Also OI_SetUserLimitsZ, OI_InitializeZ

OI_HaltZ

Syntax OI_API OI_HaltZ(void)

Description Stops any motion of the Z axis.

Parameters None.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_HaltZ functions uses the Z axis’s deceleration ramp to stop the stage
smoothly.

OASIS4I DLL Manual Version 3.1.3 PAGE 115

To immediately stop the stage without using the deceleration ramp, use the
OI_EmergencyStopAll function.

See Also OI_EmergencyStopAll

OI_InitializeZ

Syntax OI_API OI_InitializeZ(double dZRangeAbove, double dZRangeBelow)

Description Initialises the Z axis for focus control.

Parameters dZRangeAbove The desired allowable distance above (e.g., in the
positive direction) the current position, in microns.

dZRangeBelow The desired allowable distance above (e.g., in the
negative direction) the current position, in microns.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The current position is set to zero, and the Z user limits are set to the given
ranges above and below the current position.

See Also OI_InitializeXY, OI_ReadRangeZ

OI_InitializeZLimits

Syntax OI_API OI_InitializeZ()

Description Initialises the Z axis for focus control using physical limit switches.

Parameters None.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments

See Also OI_InitializeZ, OI_InitializeXY, OI_ReadRangeZ

 Version 3.1.3 OASIS4I DLL Manual PAGE 116

OI_LookupSpeedZ

Syntax OI_API OI_LookupSpeedZ(int nCruise, double* pdSpeed)

Description Retrieves the speeds, in mm per second, corresponding to a given cruise value
for the Z axis.

Parameters nCruise The cruise speed for which the actual speed is
desired.

pdSpeed The returned Z-axis speed, in mm/s, for the given
cruise speed.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_LookupSpeedZ returns the actual drive speed of the Z axis control
corresponding to a given cruise speed. The speed is derived from calibration
value (i.e., microns per step size), the current cruise speed value, and is
returned in mm per second.

Unlike the OI_GetSpeedZ function, which returns the speed corresponding to
the currently selected cruise, the OI_LookupSpeedZ function returns the
speed for a given cruise value.

See Also OI_GetSpeedZ, OI_SelectSpeedZ, OI_GetCruiseZ

OI_MoveToZ

Syntax OI_API OI_MoveToZ(double dZ, int nWait)

Description Moves to a given Z position.

Parameters dZ The desired Z position, in microns.

nWait A flag indicating whether the function waits for the
move to be completed before returning.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments If the nWait parameter is set to 0 for the call, the function returns immediately,
i.e., it does not wait for the move to complete. You can use the
OI_WaitForStoppedXYZ function also to delay execution until a move is
complete.

See Also OI_WaitForStoppedXYZ, OI_StepZ

OASIS4I DLL Manual Version 3.1.3 PAGE 117

OI_MoveToZ_Abs

Syntax OI_API OI_MoveToZ_Abs(long lZ, int nWait)

Description Moves to a given Z position, in microsteps.

Parameters lZ The desired Z position, in microsteps.

nWait A flag indicating whether the function waits for the
move to be completed before returning.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The position is specified in microsteps from the axis origin, where Z = 0. If the
nWait parameter is set to 0 for the call, the function returns immediately, i.e., it
does not wait for the move to complete. You can use the
OI_WaitForStoppedZ function also to delay execution until a move is
complete.

See Also OI_MoveToZ, OI_WaitForStoppedZ, OI_StepZ

OI_OpenMouseWheelForFocus

Syntax OI_API OpenMouseWheelForFocus(HINSTANCE hinstModule, DWORD
dwThreadId)

Description Enables control of the Z focus by the mouse wheel on the primary pointing
device.

Parameters hinstModule The calling application’s module instance handle.

dwThreadId The ID of the calling application’s primary thread.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OASIS DLL can enable control of the Z focus using the mouse wheel, if
fitted. When enabled, mouse wheel movements are translated into focus
movements.

This may be used for convenient manual focusing operations without the need
for the user to adjust the trackball, joystick, or focus drive on the microscope.

 Version 3.1.3 OASIS4I DLL Manual PAGE 118

Note this function is not supported under Windows NT.

See Also OI_CloseMouseWheelForFocus

OI_ReadLimitAlarmsZ

Syntax OI_API OI_ReadLimitAlarmsZ(int* pnZNeg, int* pnZPos)

Description Reads the current status of the Z axis limit alarms.

Parameters pnZNeg Status of the negative limit for the Z axis.

pnZPos Status of the positive limit for the Z axis.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_ReadLimitAlarmsZ functions tells you whether the Z axis is currently
at a user (software) or hardware limit.

The returned status values in the arguments can be the following:

Status Code Meaning

0 The axis is not at the limit

1 The axis is at a user limit

2 The axis is at a hardware limit

3 The axis is at both a user and a hardware
limit

See Also OI_ReadStatusZ, OI_ReadLimitAlarmsXY, OI_ReadLimitAlarmsF

OI_ReadRangeZ

Syntax OI_API OI_ReadRangeZ(double* pZMin, double* pZMax)

Description Reads the current range of Z travel.

Parameters pZMin The lower limit for the Z axis range, in microns.

pZMax The upper limit for the Z axis range, in microns.

OASIS4I DLL Manual Version 3.1.3 PAGE 119

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The Z axis range is set using OI_InitializeZ function.

See Also OI_InitializeZ

OI_ReadStatusZ

Syntax

Description Reads the current status of the Z axis axis.

Parameters lpwStatus Returns the Z axis status value.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The returned status value can be a bit wise combination of the following values:

Status Code Meaning

S_LIMIT_PHY_NEG The axis is at the negative physical limit

S_LIMIT_USR_NEG The axis is at the negative user limit

S_LIMIT_PHY_POS The axis is at the positive physical limit

S_LIMIT_USR_POS The axis is at the negative user limit

S_LIMIT_USR_NEG_SET The user negative limit has been set

S_LIMIT_USR_POS_SET The user positive limit has been set

S_INITIALIZED The axis has been initialised

S_DIRECTION If set, the direction of travel is negative

S_MOVING The axis is moving

S_MOTOR_DETECTED A motor was detected on the axis on
startup.

See Also OI_ReadStatusXY, OI_ReadStatusF, OI_ReadAxisStatus

 Version 3.1.3 OASIS4I DLL Manual PAGE 120

OI_ReadSyncZ

Syntax OI_API OI_ReadSyncZ(LPWORD pwFieldNum, double *pdZ)

Description Reads the Z-axis position synchronized with the most recent camera frame.

Parameters pwFieldNum The camera field index counter value.

pdZ Returns the Z axis position value associated with
the field index counter.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OASIS-AF and OASIS-DC1 modules provide synchronization to video and
digital cameras, respectively. When the camera synchronization has been
enabled, by using a call to the OI_SetCameraSyncMode function, each
camera frame detected by the module increments the camera frame index
counter and causes the current position to be read and stored.

The OI_ReadSyncZ function returns the last synchronized Z-axis position, as
well as the frame number associated with that value.

See Also OI_SetCameraSyncMode, OI_SetDC1Registers

OI_ReadZ

Syntax OI_API OI_ReadZ(double *pZ)

Description Reads the current Z axis position.

Parameters pZ The current Z axis position, in microns.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The Z position is given in microns, from the zero point set by a previous call to
OI_InitializeZ.

See Also OI_InitializeZ, OI_MoveToZ

OASIS4I DLL Manual Version 3.1.3 PAGE 121

OI_ReadZ_Abs

Syntax OI_API OI_ReadZ_Abs(long* plZ)

Description Reads the current Z axis position, in microsteps.

Parameters plZ The current Z axis position, in microsteps.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The Z position is given in microsteps, from the zero point set by a previous call
to OI_InitializeZ.

See Also OI_InitializeZ, OI_MoveToZ

OI_RockZ

Syntax OI_API OI_RockZ(BOOL bOn, double dZRange, int nSpeed)

Description Enables / disables continuous movement of the focus over a range of travel.

Parameters bOn TRUE starts the movement; FALSE will terminate
the movement.

dZRange The desired range of travel, in microns, above and
below the current Z position.

nSpeed The cruise speed of travel.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_RockZ function continuously drives the focus over a given range about
the current position.

The range of travel may be limited due to the user limits for the Z axis.

See Also OI_CloseMouseWheelForFocus

OI_SelectSpeedZ

Syntax OI_API OI_SelectSpeedZ(double dMmPerSec, int nFlags)

 Version 3.1.3 OASIS4I DLL Manual PAGE 122

Description Automatically selects the cruise speed corresponding to a desired speed in mm
per second.

Parameters dMmPerSec The desired speeds for the Z axis, in mm per
second.

nFlags Specifies how the search is performed, as described
in the Comments below.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_SelectSpeedZ function is used to automatically set the focus cruise
speed to a specified actual speed target, in mm per second.

The nFlags parameter specifies how the search is to be carried out:

nFlags value Meaning

0 A cruise value is found that
gives an actual speed as
close to, but not exceeding,
the desired speed.

1 A cruise value is found that
gives the closest actual
speed to the desired speed,
including speeds that are
greater than the desired
speed.

The net effect of the OI_SelectSpeedZ function is equivalent to a call to
OI_SetCruiseZ with parameters that give the best match to the desired actual
speed.

Note that you may use the OI_GetSpeedZ and OI_GetCruiseZ functions to
read the actual speed and cruise values that have been selected.

See Also OI_GetSpeedZ, OI_GetCruiseZ, OI_SetCruiseZ

OI_SetCruiseZ

Syntax OI_API OI_SetCruiseZ(int nZCruise)

Description Specifies the Z cruise speed, defined as the maximum index used in the Z
acceleration ramp table.

Parameters nZCruise The Z axis cruise speed index.

OASIS4I DLL Manual Version 3.1.3 PAGE 123

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The cruise speed is specified via the maximum index to be used in the currently
defined acceleration / deceleration ramp for a given axis.

Each axis is assigned an associated ramp table in the OASIS hardware. This
ramp table determines how acceleration and deceleration are accomplished,
and also specifies the actual speeds to be used.

The ramp table has 512 entries, indexed from 0 to 511. The OI_SetCruiseZ
function specifies which index in the table will be used as the maximum speed
at which the Z axis is moved.

See Also OI_GetCruiseZ, OI_SetRampZ

OI_SetDriveSenseZ

Syntax OI_API OI_SetDriveSenseZ(int nZDir)

Description Specifies the physical direction of travel for positive and negative movements.

Parameters nZDir The Z axis drive sense.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The motor driving a given axis can be driven in either a clockwise or counter-
clockwise motion. The drive sense parameter sets which direction of rotation is
associated with positive valued movements.

A value of zero (0) indicates standard movement.

A non-zero value indicates reversed movement.

See Also OI_GetDriveSenseZ, OI_SetAxisSense

OI_SetMouseWheelPars

Syntax OI_API OI_SetMouseWheelPars(double dStepSize, int nSpeed)

Description Sets the current settings for control of the Z axis using the mouse wheel.

 Version 3.1.3 OASIS4I DLL Manual PAGE 124

Parameters dStepSize The step size, in microns, for each step of the
mouse wheel.

nSpeed The desired maximum speed of movement to
continuous driving when the mouse wheel is
pressed.

Return
Value

OI_OK if successful.

Comments When mouse wheel control of the focus is enabled, the user may rotate the
mouse wheel to step the focus up or down, or may hold down the mouse wheel
and use the wheel rotation to increase the speed of a continuous drive in the
positive or negative direction.

The OI_SetMouseWheelPars function defines the parameters used for
stepping and driving the focus using the mouse wheel.

See Also OI_GetMouseWheelPars, OI_OpenMouseWheelForFocus ,
OI_CloseMouseWheelForFocus

OI_SetMouseWheelZ

Syntax OI_API OI_SetMouseWheelZ(BOOL bEnabled)

Description Sets whether mouse wheel control of the Z axis is enabled.

Parameters bEnabled Set to TRUE to enable, FALSE to disable.

Return
Value

OI_OK if successful.

Comments Once the use of the mouse wheel for focus control has been established using
the OI_OpenMouseWheelForFocus function, it may be enabled and disabled
temporarily using the OI_SetMouseWheelZ function.

To terminate the hook function used to trap the mouse wheel events, use the
OI_CloseMouseWheelForFocus function.

See Also OI_GetMouseWheelPars, OI_OpenMouseWheelForFocus,
OI_CloseMouseWheelForFocus

OI_SetOriginZ

Syntax OI_API OI_SetOriginZ(void)

Description Sets the current Z position to be the origin (e.g., 0).

OASIS4I DLL Manual Version 3.1.3 PAGE 125

Parameters None.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_SetOriginZ function is used to establish the origin of the overall,
micron-based coordinate system of the Z focus.

The origin is defined to be position [Z=0], and all positions are made relative to
this origin.

By default, when the OI_InitializeZ function is used to initialise the range of
travel available to the focus, the origin is set to the current position

The OI_SetOriginZ function may be used to set the focus origin to another
user-defined position. Note that the physical positions of the software limits are
unchanged by this function.

Warning The OI_SetOriginZ function re-sets the entire coordinate system for the focus.
After a call to this function, previously stored position values may no longer
correspond to their associated physical focus positions.

See Also OI_InitializeZ

OI_SetPitchZ

Syntax OI_API OI_SetPitchZ(double dZPitch)

Description Sets the current position for the Z axis.

Parameters dZPitch The pitch, in millimetres, of the Z axis.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_SetPitchZ function is used to internally calculate the actual size of each
micro-step for the Z axis. Typically, there are 12,800 micro-steps per revolution
of the lead screw. From the supplied lead screw pitch, the OI_SetPitchZ
function will automatically calculate this minimum step size for you.

NOTE: All micron to micro-step conversions use these values for their
calibration. It is critical that these values be correctly supplied in order to ensure
accurate movement.

To retrieve the current step size value, you may use the OI_GetAxisStepSize
function.

 Version 3.1.3 OASIS4I DLL Manual PAGE 126

Consult the specifications for your specific Z axis to determine the actual lead
screw pitch. In many cases, the fine focus of a microscope gives 100 microns
per revolution, or an effective pitch of 0.1 mm.

See Also OI_SetAxisStepSize, OI_GetAxisStepSize, OI_SetPitchXY, OI_SetPitchF

OI_SetPositionZ

Syntax OI_API OI_SetPositionZ(double dZ)

Description Sets the current position for the Z axis.

Parameters dZ The desired Z-axis position, in microns.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_SetPositionZ function resets the coordinate system for the Z axis. The
current Z position is redefined to be the values passed in dZ.

Note that the physical positions of the limits for the axis are retained by this
function. That is, the OI_SetPositionZ function maintains the same relation
between the current position and the position of the negative and positive soft
limits. Therefore, the coordinates values associated for these limits will be
changed if a new position value is specified for the axis.

See Also OI_SetPositionXYZ, OI_SetPositionXY, OI_SetPositionF, OI_SetOriginXY,
OI_SetOriginZ, OI_SetOriginF, OI_InitializeXY, OI_InitializeZ, OI_InitializeF

OI_SetRampZ

Syntax OI_API OI_SetRampZ(int nZRamp)

Description Specifies which pre-defined acceleration / deceleration ramp is in use for the Z
axis.

Parameters nZRamp Identifies the pre-defined ramp to be used.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments Three pre-defined tables may be selected for a given axis, as indicated by the
nRamp parameter:

OASIS4I DLL Manual Version 3.1.3 PAGE 127

nRamp value Acceleration

0 Slow

1 Medium

2 Fast

See Also OI_GetRampZ, OI_SetRampXY, OI_SetRampF, OI_SetAxisRamp

OI_SetUserLimitsZ

Syntax OI_API OI_SetUserLimitsZ(double dZMin, double dZMax)

Description Sets user-defined limits of travel along the Z axis.

Parameters dZMin The minimum coordinate for the Z axis, in microns.

dZMax The maximum coordinate for the Z axis, in microns.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_SetUserLimitsZ functions allows “soft” limits to be set at any point
along the Z axis. Once the soft limits are set, the OASIS controller will not allow
any movement outside of these limit values.

Note that the soft limits are distinct from the physical limit switches of the stage.
The “hard” physical limit switches provide direct electronic feedback to the
OASIS controller indicating the physical limits of travel available for the stage.

When using the OI_InitializeZ function to initialise the range of travel and
position of the stage, the OASIS controller automatically sets the current
position to 0 and also sets the Z user limits to positions based on the ranges
passed to the function.

See Also OI_GetUserLimitsZ, OI_InitializeZ

OI_StepZ

Syntax OIAPI OI_StepZ(double dZDistance, int nWait)

Description Moves a relative distance from the current Z position.

Parameters dZDistance The desired distance for the Z move, in microns.

 Version 3.1.3 OASIS4I DLL Manual PAGE 128

nWait A flag indicating whether the function waits for the
move to be completed before returning.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments If the nWait parameter is set to 0 for the call, the function returns immediately,
i.e., it does not wait for the move to complete. You can use the
OI_WaitForStoppedXYZ function also to delay execution until a move is
complete.

See Also OI_WaitForStoppedXYZ, OI_MoveToZ

OI_WaitForStoppedZ

Syntax OIAPI OI_ WaitForStoppedZ (void)

Description Waits for the Z axis to stop moving.

Parameters None.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_WaitForStoppedZ function is useful after any Z axis move functions
are called with zero wait parameters. OI_WaitForStoppedZ will not return until
the F axis has completed its movement.

See Also OI_WaitForStoppedXYZ, OI_MoveToZ

F-Axis (4th axis) Control

OI_ClearUserLimitsF

Syntax OI_API OI_ClearUserLimitsF(void)

Description Clears the user limits for the F axis.

OASIS4I DLL Manual Version 3.1.3 PAGE 129

Parameters None.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The positive and negative software limits for the F axis will be cleared by this
function. Only a physical limit will restrict the range of travel.

See Also OI_SetUserLimitsF, OI_InitializeF

OI_GetCruiseF

Syntax OI_API OI_GetCruiseZ(int* pnFCruise)

Description Retrieves the current F axis cruise speed index.

Parameters pnFCruise The returned F axis cruise speed index.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments See the Comments for the OI_SetCruiseF function for more information about
cruise speeds.

See Also OI_SetCruiseF

OI_GetDriveSenseF

Syntax OI_API OI_GetDriveSenseF(int* pnFDir)

Description Retrieves the current direction of rotation setting for the F axis.

Parameters pnFDir The returned F axis drive sense.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments See the Comments for OI_SetDriveSenseF for more information about the
values for drive sense.

See Also OI_SetDriveSenseF, OI_GetAxisSense

 Version 3.1.3 OASIS4I DLL Manual PAGE 130

OI_GetRampF

Syntax OI_API OI_GetRampF(int* pnFRamp)

Description Retrieves which pre-defined acceleration / deceleration ramp is in use for the F
axis.

Parameters pnFRamp Indicates which pre-defined ramp is currently in use
for the F axis.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments Three pre-defined tables may be selected for a given axis, as indicated by the
nRamp parameter:

nRamp value Acceleration

0 Slow

1 Medium

2 Fast

See Also OI_SetRampF, OI_SetAxisRamp

OI_GetSpeedF

Syntax OI_API OI_GetSpeedF(double* pdSpeed)

Description Retrieves the current speeds, in mm per second, in use by the F axis.

Parameters pdSpeed The returned current F-axis speed, in mm/s.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_GetSpeedF returns the actual drive speed of the 4th axis control
corresponding to the cruise speed values. The speed is derived from
calibration value (i.e., microns per step size), the current cruise speed value,
and is returned in mm per second.

See Also OI_SelectSpeedF, OI_LookupSpeedF

OASIS4I DLL Manual Version 3.1.3 PAGE 131

OI_GetUserLimitsF

Syntax OI_API OI_GetUserLimitsF(double* pdFMin, double* pdFMax)

Description Retrieves the current user limit settings for the F axis.

Parameters pdFMin The minimum coordinate for the F axis, in microns.

pdFMax The maximum coordinate for the F axis, in microns.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments See the Comments for the OI_SetUserLimitsF for more information about user
limits.

See Also OI_SetUserLimitsF, OI_InitializeF

OI_HaltF

Syntax OI_API OI_HaltF(void)

Description Stops any motion of the F axis.

Parameters None.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_HaltF functions uses the F axis’s deceleration ramp to stop the stage
smoothly.

To immediately stop the stage without using the deceleration ramp, use the
OI_EmergencyStopAll function.

See Also OI_EmergencyStopAll

OI_InitializeF

Syntax OI_API OI_InitializeF(void)

 Version 3.1.3 OASIS4I DLL Manual PAGE 132

Description Initialises the F axis by searching for negative and positive physical limit
switches.

Parameters None.

Return
Value

OI_OK if successful.

OI_ABORT if the user aborts the initialisation process using either the ESC or
CTRL-C key press.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The current position is set to zero, and the F user limits are set to the given
ranges above and below the current position.

See Also OI_InitializeFRange, OI_ReadRangeF

OI_InitializeFRange

Syntax OI_API OI_InitializeFRange(double dFNegLimit, double dFPosLimit)

Description Initialises the F axis using a specified distance on each side of the current
position.

Parameters dFNegLimit The desired allowable distance in the negative
direction from the current position, in microns.

dFPosLimit The desired allowable distance in the positive
direction from the current position, in microns.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments In situation where the F axis is fitted to a device that does not provide physical
limit switches, use the OI_InitializeFRange function to initialise the axis to a
desired range of travel about the current position.

The current position is set to zero, and the F user limits are set to the given
ranges above and below the current position.

See Also OI_InitializeF, OI_ReadRangeF

OASIS4I DLL Manual Version 3.1.3 PAGE 133

OI_LookupSpeedF

Syntax OI_API OI_LookupSpeedF(int nCruise, double* pdSpeed)

Description Retrieves the speeds, in mm per second, corresponding to a given cruise value
for the F axis.

Parameters nCruise The cruise speed for which the actual speed is
desired.

pdSpeed The returned current F-axis speed, in mm/s, for the
given cruise speed.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_LookupSpeedF returns the actual drive speed of the 4th axis control
corresponding to a given cruise speed. The speed is derived from calibration
value (i.e., microns per step size), the current cruise speed value, and is
returned in mm per second.

Unlike the OI_GetSpeedF function, which returns the speed corresponding to
the currently selected cruise, the OI_LookupSpeedF function returns the
speed for a given cruise value.

See Also OI_GetSpeedF, OI_SelectSpeedF, OI_GetCruiseF

OI_MoveToF

Syntax OI_API OI_MoveToF(double dF, int nWait)

Description Moves to a given F position.

Parameters dF The desired F position, in microns.

nWait A flag indicating whether the function waits for the
move to be completed before returning.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments If the nWait parameter is set to 0 for the call, the function returns immediately,
i.e., it does not wait for the move to complete. You can use the
OI_WaitForStoppedXYZ function also to delay execution until a move is
complete.

 Version 3.1.3 OASIS4I DLL Manual PAGE 134

See Also OI_WaitForStoppedXYZ, OI_StepZ

OI_ReadF

Syntax OI_API OI_ReadF(double *pF)

Description Reads the current F axis position.

Parameters pF The current F axis position, in microns.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The F position is given in microns, from the zero point set by a previous call to
OI_InitializeF.

See Also OI_InitializeF, OI_MoveToF

OI_ReadLimitAlarmsF

Syntax OI_API OI_ReadLimitAlarmsF(int* pnFNeg, int* pnFPos)

Description Reads the current status of the F axis limit alarms.

Parameters pnFNeg Status of the negative limit for the F axis.

pnFPos Status of the positive limit for the F axis.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_ReadLimitAlarmsF functions tells you whether the F axis is currently
at a user (software) or hardware limit.

The returned status values in the arguments can be the following:

Status Code Meaning

0 The axis is not at the limit

1 The axis is at a user limit

2 The axis is at a hardware limit

OASIS4I DLL Manual Version 3.1.3 PAGE 135

3 The axis is at both a user and a hardware
limit

See Also OI_ReadStatusF, OI_ReadLimitAlarmsXY, OI_ReadLimitAlarmsZ

OI_ReadRangeF

Syntax OI_API OI_ReadRangeF(double* pFMin, double* pFMax)

Description Reads the current range of F travel.

Parameters pFMin The lower limit for the F axis range, in microns.

pFMax The upper limit for the F axis range, in microns.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The F axis range is set using OI_InitializeF function.

See Also OI_InitializeF

OI_ReadStatusF

Syntax OI_API OI_ReadStatusF(LPWORD lpwStatus)

Description Reads the current status of the F axis.

Parameters lpwStatus Returns the F axis status value.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The returned status value can be a bit wise combination of the following values:

Status Code Meaning

S_LIMIT_PHY_NEG The axis is at the negative physical limit

S_LIMIT_USR_NEG The axis is at the negative user limit

S_LIMIT_PHY_POS The axis is at the positive physical limit

 Version 3.1.3 OASIS4I DLL Manual PAGE 136

S_LIMIT_USR_POS The axis is at the negative user limit

S_LIMIT_USR_NEG_SET The user negative limit has been set

S_LIMIT_USR_POS_SET The user positive limit has been set

S_INITIALIZED The axis has been initialised

S_DIRECTION If set, the direction of travel is negative

S_MOVING The axis is moving

See Also OI_ReadStatusXY, OI_ReadStatusZ, OI_ReadAxisStatus

OI_SelectSpeedF

Syntax OI_API OI_SelectSpeedF(double dMmPerSec, int nFlags)

Description Automatically selects the cruise speed corresponding to a desired speed in mm
per second.

Parameters dMmPerSec The desired speeds for the F axis, in mm per
second.

nFlags Specifies how the search is performed, as described
in the Comments below.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_SelectSpeedF function is used to automatically set the 4th axis cruise
speed to a specified actual speed target, in mm per second.

The nFlags parameter specifies how the search is to be carried out:

nFlags value Meaning

0 A cruise value is found that
gives an actual speed as
close to, but not exceeding,
the desired speed.

1 A cruise value is found that
gives the closest actual
speed to the desired speed,
including speeds that are
greater than the desired
speed.

OASIS4I DLL Manual Version 3.1.3 PAGE 137

The net effect of the OI_SelectSpeedF function is equivalent to a call to
OI_SetCruiseF with parameters that give the best match to the desired actual
speed.

Note that you may use the OI_GetSpeedF and OI_GetCruiseF functions to
read the actual speed and cruise values that have been selected.

See Also OI_GetSpeedF, OI_GetCruiseF, OI_SetCruiseF

OI_SetCruiseF

Syntax OI_API OI_SetCruiseF(int nFCruise)

Description Specifies the F cruise speed, defined as the maximum index used in the F
acceleration ramp table.

Parameters nFCruise The F axis cruise speed index.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The cruise speed is specified via the maximum index to be used in the currently
defined acceleration / deceleration ramp for a given axis.

Each axis is assigned an associated ramp table in the OASIS hardware. This
ramp table determines how acceleration and deceleration are accomplished,
and also specifies the actual speeds to be used.

The ramp table has 512 entries, indexed from 0 to 511. The OI_SetCruiseF
function specifies which index in the table will be used as the maximum speed
at which the F axis is moved.

See Also OI_GetCruiseF, OI_SetRampF

OI_SetDriveSenseF

Syntax OI_API OI_SetDriveSenseF(int nFDir)

Description Specifies the physical direction of travel for positive and negative movements.

Parameters nFDir The F axis drive sense.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the

 Version 3.1.3 OASIS4I DLL Manual PAGE 138

reason for failure.

Comments The motor driving a given axis can be driven in either a clockwise or counter-
clockwise motion. The drive sense parameter sets which direction of rotation is
associated with positive valued movements.

A value of zero (0) indicates standard movement.

A non-zero value indicates reversed movement.

See Also OI_GetDriveSenseF, OI_SetAxisSense

OI_SetOriginF

Syntax OI_API OI_SetOriginF(void)

Description Sets the current F position to be the origin (e.g., 0).

Parameters None.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_SetOriginF function is used to establish the origin of the overall,
micron-based coordinate system of the F axis.

The origin is defined to be position [F=0], and all positions are made relative to
this origin.

By default, when the OI_InitializeFRange function is used to initialise the range
of travel available to the F axis, the origin is set to the current position

The OI_SetOriginF function may be used to set the F axis origin to another
user-defined position. Note that the physical positions of the software limits are
unchanged by this function.

Warning The OI_SetOriginF function re-sets the entire coordinate system for the F axis.
After a call to this function, previously stored position values may no longer
correspond to their associated physical focus positions.

See Also OI_InitializeFRange

OI_SetPitchF

Syntax OI_API OI_SetPitchF(double dFPitch)

OASIS4I DLL Manual Version 3.1.3 PAGE 139

Description Sets the current position for the F axis.

Parameters dFPitch The pitch, in millimetres, of the F axis.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_SetPitchF function is used to internally calculate the actual size of each
micro-step for the F axis. Typically, there are 12,800 micro-steps per revolution
of the lead screw. From the supplied lead screw pitch, the OI_SetPitchF
function will automatically calculate this minimum step size for you.

NOTE: All micron to micro-step conversions use these values for their
calibration. It is critical that these values be correctly supplied in order to ensure
accurate movement.

To retrieve the current step size value, you may use the OI_GetAxisStepSize
function.

Consult the specifications for your specific F axis to determine the actual lead
screw pitch.

See Also OI_SetAxisStepSize, OI_GetAxisStepSize, OI_SetPitchXY, OI_SetPitchZ

OI_SetPositionF

Syntax OI_API OI_SetPositionF(double dF)

Description Sets the current position for the F axis.

Parameters dF The desired F-axis position, in microns.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_SetPositionF function resets the coordinate system for the F axis. The
current F position is redefined to be the values passed in dF.

Note that the physical positions of the limits for the axis are retained by this
function. That is, the OI_SetPositionF function maintains the same relation
between the current position and the position of the negative and positive soft
limits. Therefore, the coordinates values associated for these limits will be
changed if a new position value is specified for the axis.

See Also OI_SetPositionXYZ, OI_SetPositionXY, OI_SetPositionZ, OI_SetOriginXY,
OI_SetOriginZ, OI_SetOriginF, OI_InitializeXY, OI_InitializeZ, OI_InitializeF

 Version 3.1.3 OASIS4I DLL Manual PAGE 140

OI_SetRampF

Syntax OI_API OI_SetRampF(int nFRamp)

Description Specifies which pre-defined acceleration / deceleration ramp is in use for the F
axis.

Parameters nFRamp Identifies the pre-defined ramp to be used.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments Three pre-defined tables may be selected for a given axis, as indicated by the
nRamp parameter:

nRamp value Acceleration

0 Slow

1 Medium

2 Fast

See Also OI_GetRampF, OI_SetRampXY, OI_SetRampF, OI_SetAxisRamp

OI_SetUserLimitsF

Syntax OI_API OI_SetUserLimitsF(double dFMin, double dFMax)

Description Sets user-defined limits of travel along the F axis.

Parameters dFMin The minimum coordinate for the F axis, in microns.

dFMax The maximum coordinate for the F axis, in microns.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_SetUserLimitsF functions allows “soft” limits to be set at any point
along the F axis. Once the soft limits are set, the OASIS controller will not allow
any movement outside of these limit values.

Note that the soft limits are distinct from the physical limit switches of the stage.
The “hard” physical limit switches provide direct electronic feedback to the

OASIS4I DLL Manual Version 3.1.3 PAGE 141

OASIS controller indicating the physical limits of travel available for the stage.

When using the OI_InitializeFRange function to initialise the range of travel
and position of the stage, the OASIS controller automatically sets the current
position to 0 and also sets the Z user limits to positions based on the ranges
passed to the function.

See Also OI_GetUserLimitsZ, OI_InitializeFRange

OI_StepF

Syntax OIAPI OI_StepF(double dFDistance, int nWait)

Description Moves a relative distance from the current F position.

Parameters dFDistance The desired distance for the F move, in microns.

nWait A flag indicating whether the function waits for the
move to be completed before returning.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments If the nWait parameter is set to 0 for the call, the function returns immediately,
i.e., it does not wait for the move to complete. You can use the
OI_WaitForStoppedXYZ function also to delay execution until a move is
complete.

See Also OI_WaitForStoppedXYZ, OI_MoveToF

OI_WaitForStoppedF

Syntax OIAPI OI_ WaitForStoppedF (void)

Description Waits for the F axis to stop moving.

Parameters None.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_WaitForStoppedF function is useful after any F axis move functions

 Version 3.1.3 OASIS4I DLL Manual PAGE 142

are called with zero wait parameters. OI_WaitForStoppedF will not return until
the F axis has completed its movement.

See Also OI_WaitForStoppedXYZ, OI_MoveToF

T-Axis (5th axis) and S-Axis (6th axis)
Control

When using the OASIS-blue controller, the BLUE-DAC plug-in duaghter module plus the
BLUE-CONNECT output sister card provides an additional 2 axes of stepper control. When
using the OASIS-4i controller, the OASIS-XA1 module is a plug-in daughter board for the
OASIS controller that provides a single additional axis of movement.

This 5th axis is designated “T”, and the 6th axis is designated “S”. The OASIS DLL includes a
number of functions to manage the setup and control of the T- and S- axes via the optional
hardware modules.

The following API’s are listed for the T-axis but apply equally for the S-axis using the variants
shown under Syntax.

OI_ClearUserLimitsT

Syntax OI_API OI_ClearUserLimitsT(void)

OI_API OI_ClearUserLimitsS(void)

Description Clears the user limits for the axis.

Parameters None.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The positive and negative software limits for the T axis will be cleared by this
function. Only a physical limit will restrict the range of travel.

See Also OI_SetUserLimitsT, OI_InitializeT

OASIS4I DLL Manual Version 3.1.3 PAGE 143

OI_DriveContinuousT

Syntax OI_API OI_DriveContinuousT(int nSpeed)

OI_API OI_DriveContinuousS(int nSpeed)

Description Drives the axis at a continuous speed.

Parameters nSpeed A signed integer indicating the direction and speed
at which to drive the T axis.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The nSpeed parameter specifies the desired speed of movement in half-steps
per second.

The speed values are signed to indicate the direction of travel, i.e., a negative
speed causes a continuous drive in the negative direction, and may be any
integer in the range of –4096 to +4096.

To stop the continuous movement, use a corresponding call to either the
OI_HaltT or the OI_EmergencyStopAll function.

See Also OI_HaltT, OI_EmergencyStopAll

OI_GetCruiseT

Syntax OI_API OI_GetCruiseT(int* pnCruise)

OI_API OI_GetCruiseS(int* pnCruise)

Description Retrieves the current T axis cruise speed index.

Parameters pnCruise The returned axis cruise speed index.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments See the Comments for the OI_SetCruiseT function for more information about
cruise speeds.

See Also OI_SetCruiseT

 Version 3.1.3 OASIS4I DLL Manual PAGE 144

OI_GetDriveSenseT

Syntax OI_API OI_GetDriveSenseT(int* pnDir)

OI_API OI_GetDriveSenseS(int* pnDir)

Description Retrieves the current direction of rotation setting for the axis.

Parameters pnDir The returned axis drive sense.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments See the Comments for OI_SetDriveSenseT for more information about the
values for drive sense.

See Also OI_SetDriveSenseT, OI_GetAxisSense

OI_GetRampT

Syntax OI_API OI_GetRampT(int* pnRamp)

OI_API OI_GetRampS(int* pnRamp)

Description Retrieves which pre-defined acceleration / deceleration ramp is in use for the
axis.

Parameters pnRamp Indicates which pre-defined ramp is currently in use
for the T axis.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments Three pre-defined tables may be selected for a given axis, as indicated by the
pnRamp parameter:

pnRamp value Acceleration

0 Slow

1 Medium

2 Fast

See Also OI_SetRampT, OI_SetAxisRamp

OASIS4I DLL Manual Version 3.1.3 PAGE 145

OI_GetSpeedT

Syntax OI_API OI_GetSpeedT(double* pdSpeed)

OI_API OI_GetSpeedS(double* pdSpeed)

Description Retrieves the current speeds, in mm per second, in use by the axis.

Parameters pdSpeed The returned current axis speed, in mm/s.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_GetSpeedT returns the actual drive speed of the 5th axis control
corresponding to the cruise speed values. The speed is derived from
calibration value (i.e., microns per step size), the current cruise speed value,
and is returned in mm per second.

See Also OI_SelectSpeedT, OI_LookupSpeedT

OI_GetUserLimitsT

Syntax OI_API OI_GetUserLimitsT(double* pdMin, double* pdMax)

OI_API OI_GetUserLimitsS(double* pdMin, double* pdMax)

Description Retrieves the current user limit settings for the S axis.

Parameters pdMin The minimum coordinate for the axis, in microns.

pdMax The maximum coordinate for the axis, in microns.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments See the Comments for the OI_SetUserLimitsT for more information about user
limits.

See Also OI_SetUserLimitsT, OI_InitializeT

OI_HaltT

Syntax OI_API OI_HaltT(void)

 Version 3.1.3 OASIS4I DLL Manual PAGE 146

OI_API OI_HaltS(void)

Description Stops any motion of the axis.

Parameters None.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_HaltT function uses the T axis’s deceleration ramp to stop the stage
smoothly.

To immediately stop the stage without using the deceleration ramp, use the
OI_EmergencyStopAll function.

See Also OI_EmergencyStopAll

OI_InitializeT

Syntax OI_API OI_InitializeT(void)

OI_API OI_InitializeS(void)

Description Initialises the axis by searching for negative and positive physical limit switches.

Parameters None.

Return
Value

OI_OK if successful.

OI_ABORT if the user aborts the initialisation process using either the ESC or
CTRL-C key press.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The current position is set to zero, and the T user limits are set to the given
ranges above and below the current position.

See Also OI_InitializeTRange, OI_ReadRangeT

OI_InitializeTRange

Syntax OI_API OI_InitializeTRange(double dNegLimit, double dPosLimit)

OI_API OI_InitializeSRange(double dNegLimit, double dPosLimit)

OASIS4I DLL Manual Version 3.1.3 PAGE 147

Description Initialises the axis using a specified distance on each side of the current
position.

Parameters dNegLimit The desired allowable distance in the negative
direction from the current position, in microns.

dPosLimit The desired allowable distance in the positive
direction from the current position, in microns.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments In situation where the T axis is fitted to a device that does not provide physical
limit switches, use the OI_InitializeTRange function to initialise the axis to a
desired range of travel about the current position.

The current position is set to zero, and the T user limits are set to the given
ranges above and below the current position.

See Also OI_InitializeT, OI_ReadRangeT

OI_LookupSpeedT

Syntax OI_API OI_LookupSpeedT(int nCruise, double* pdSpeed)

OI_API OI_LookupSpeedS(int nCruise, double* pdSpeed)

Description Retrieves the speeds, in mm per second, corresponding to a given cruise value
for the axis.

Parameters nCruise The cruise speed for which the actual speed is
desired.

pdSpeed The returned current axis speed, in mm/s, for the
given cruise speed.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_LookupSpeedT returns the actual drive speed of the 5th axis control
corresponding to a given cruise speed. The speed is derived from calibration
value (i.e., microns per step size), the current cruise speed value, and is
returned in mm per second.

Unlike the OI_GetSpeedT function, which returns the speed corresponding to
the currently selected cruise, the OI_LookupSpeedT function returns the
speed for a given cruise value.

 Version 3.1.3 OASIS4I DLL Manual PAGE 148

See Also OI_GetSpeedT, OI_SelectSpeedT, OI_GetCruiseT

OI_MoveToT

Syntax OI_API OI_MoveToT(double dPos, int nWait)

OI_API OI_MoveToS(double dPos, int nWait)

Description Moves to a given position.

Parameters dPos The desired position, in microns.

nWait A flag indicating whether the function waits for the
move to be completed before returning.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments If the nWait parameter is set to 0 for the call, the function returns immediately,
i.e., it does not wait for the move to complete. You can use the
OI_WaitForStoppedT function also to delay execution until a move is
complete.

See Also OI_WaitForStoppedT, OI_StepT

OI_ReadLimitAlarmsT

Syntax OI_API OI_ReadLimitAlarmsT(int* pnNeg, int* pnPos)

OI_API OI_ReadLimitAlarmsS(int* pnNeg, int* pnPos)

Description Reads the current status of the axis limit alarms.

Parameters pnNeg Status of the negative limit for the axis.

pnPos Status of the positive limit for the axis.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_ReadLimitAlarmsT function tells you whether the T axis is currently at
a user (software) or hardware limit.

The returned status values in the arguments can be the following:

OASIS4I DLL Manual Version 3.1.3 PAGE 149

Status Code Meaning

0 The axis is not at the limit

1 The axis is at a user limit

2 The axis is at a hardware limit

3 The axis is at both a user and a hardware
limit

See Also OI_ReadStatusT, OI_ReadLimitAlarmsXY, OI_ReadLimitAlarmsZ,
OI_ReadLimitAlarmsF

OI_ReadRangeT

Syntax OI_API OI_ReadRangeT(double* pdMin, double* pdMax)

OI_API OI_ReadRangeS(double* pdMin, double* pdMax)

Description Reads the current range of travel.

Parameters pdMin The lower limit for the axis range, in microns.

pdMax The upper limit for the axis range, in microns.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The T axis range is set using OI_InitializeT function.

See Also OI_InitializeT

OI_ReadStatusT

Syntax OI_API OI_ReadStatusT(LPWORD lpwStatus)

OI_API OI_ReadStatusS(LPWORD lpwStatus)

Description Reads the current status of the axis.

Parameters lpwStatus Returns the axis status value.

Return
Value

OI_OK if successful.

 Version 3.1.3 OASIS4I DLL Manual PAGE 150

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The returned status value can be a bit wise combination of the following values:

Status Code Meaning

S_LIMIT_PHY_NEG The axis is at the negative physical limit

S_LIMIT_USR_NEG The axis is at the negative user limit

S_LIMIT_PHY_POS The axis is at the positive physical limit

S_LIMIT_USR_POS The axis is at the negative user limit

S_LIMIT_USR_NEG_SET The user negative limit has been set

S_LIMIT_USR_POS_SET The user positive limit has been set

S_INITIALIZED The axis has been initialised

S_DIRECTION If set, the direction of travel is negative

S_MOVING The axis is moving

See Also OI_ReadStatusXY, OI_ReadStatusZ, OI_ReadStatusF, OI_ReadAxisStatus

OI_ReadT

Syntax OI_API OI_ReadT(double *pPos)

OI_API OI_ReadS(double *pPos)

Description Reads the current axis position.

Parameters pPos The current axis position, in microns.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The T position is given in microns, from the zero point set by a previous call to
OI_InitializeT.

See Also OI_InitializeT, OI_MoveToT

OASIS4I DLL Manual Version 3.1.3 PAGE 151

OI_SelectSpeedT

Syntax OI_API OI_SelectSpeedT(double dMmPerSec, int nFlags)

OI_API OI_SelectSpeedS(double dMmPerSec, int nFlags)

Description Automatically selects the cruise speed corresponding to a desired speed in mm
per second.

Parameters dMmPerSec The desired speeds for the axis, in mm per second.

nFlags Specifices how the search is performed, as
described in the Comments below.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_SelectSpeedT function is used to automatically set the 5th axis cruise
speed to a specified actual speed target, in mm per second.

The nFlags parameter specifies how the search is to be carried out:

nFlags value Meaning

0 A cruise value is found that
gives an actual speed as
close to, but not exceeding,
the desired speed.

1 A cruise value is found that
gives the closest actual
speed to the desired speed,
including speeds that are
greater than the desired
speed.

The net effect of the OI_SelectSpeedT function is equivalent to a call to
OI_SetCruiseT with parameters that give the best match to the desired actual
speed.

Note that you may use the OI_GetSpeedT and OI_GetCruiseT functions to
read the actual speed and cruise values that have been selected.

See Also OI_GetSpeedT, OI_GetCruiseT, OI_SetCruiseT

OI_SetCruiseT

Syntax OI_API OI_SetCruiseT(int nCruise)

 Version 3.1.3 OASIS4I DLL Manual PAGE 152

OI_API OI_SetCruiseS(int nCruise)

Description Specifies the cruise speed index. For the OASIS-4i, this is defined as the
maximum index used in the F acceleration ramp table. For the OASIS-blue, the
T and S cruise are independently set.

Parameters nCruise The axis cruise speed index.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The cruise speed is specified via the maximum index to be used in the currently
defined acceleration / deceleration ramp for a given axis.

Each axis is assigned an associated ramp table in the OASIS hardware. This
ramp table determines how acceleration and deceleration are accomplished,
and also specifies the actual speeds to be used.

The ramp table has 512 entries, indexed from 0 to 511. The OI_SetCruiseT
function specifies which index in the table will be used as the maximum speed
at which the T axis is moved.

See Also OI_GetCruiseT, OI_SetRampT

OI_SetDriveSenseT

Syntax OI_API OI_SetDriveSenseT(int nDir)

OI_API OI_SetDriveSenseS(int nDir)

Description Specifies the physical direction of travel for positive and negative movements.

Parameters nDir The axis drive sense.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The motor driving a given axis can be driven in either a clockwise or counter-
clockwise motion. The drive sense parameter sets which direction of rotation is
associated with positive valued movements.

A value of zero (0) indicates standard movement.

A non-zero value indicates reversed movement.

See Also OI_GetDriveSenseT, OI_SetAxisSense

OASIS4I DLL Manual Version 3.1.3 PAGE 153

OI_SetOriginT

Syntax OI_API OI_SetOriginT(void)

OI_API OI_SetOriginS(void)

Description Sets the current position to be the origin (i.e., 0.0). The current location will be
defined as position 0.0.

Parameters None.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_SetOriginF function is used to establish the origin of the overall,
micron-based coordinate system of the F axis.

The origin is defined to be position [F=0], and all positions are made relative to
this origin.

By default, when the OI_InitializeFRange function is used to initialise the range
of travel available to the F axis, the origin is set to the current position

The OI_SetOriginF function may be used to set the F axis origin to another
user-defined position. Note that the physical positions of the software limits are
unchanged by this function.

Warning The OI_SetOriginF function re-sets the entire coordinate system for the F axis.
After a call to this function, previously stored position values may no longer
correspond to their associated physical focus positions.

See Also OI_InitializeFRange

OI_SetPitchT

Syntax OI_API OI_SetPitchT(double dPitch)

OI_API OI_SetPitchS(double dPitch)

Description Sets the current position for the axis.

Parameters dPitch The pitch, in millimetres, of the axis.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the

 Version 3.1.3 OASIS4I DLL Manual PAGE 154

reason for failure.

Comments The OI_SetPitchT function is used to internally calculate the actual size of each
micro-step for the T axis. Typically, there are 12,800 micro-steps per revolution
of the lead screw. From the supplied lead screw pitch, the OI_SetPitchT
function will automatically calculate this minimum step size for you.

NOTE: All micron to micro-step conversions use these values for their
calibration. It is critical that these values be correctly supplied in order to ensure
accurate movement.

To retrieve the current step size value, you may use the OI_GetAxisStepSize
function.

Consult the specifications for your specific F axis to determine the actual lead
screw pitch.

See Also OI_SetAxisStepSize, OI_GetAxisStepSize, OI_SetPitchXY, OI_SetPitchZ,
OI_SetPitchF

OI_SetPositionT

Syntax OI_API OI_SetPositionT(double dNewPos)

OI_API OI_SetPositionS(double dNewPos)

Description Sets the current position for the axis.

Parameters dNewPos The desired axis position, in microns. The current
location will be defined to be this position.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_SetPositionT function resets the coordinate system for the T axis. The
current T position is redefined to be the values passed in dT.

Note that the physical positions of the limits for the axis are retained by this
function. That is, the OI_SetPositionT function maintains the same relation
between the current position and the position of the negative and positive soft
limits. Therefore, the coordinates values associated for these limits will be
changed if a new position value is specified for the axis.

See Also OI_SetPositionXYZ, OI_SetPositionXY, OI_SetPositionZ, OI_SetOriginXY,
OI_SetOriginZ, OI_SetOriginF, OI_InitializeXY, OI_InitializeZ, OI_InitializeF

OASIS4I DLL Manual Version 3.1.3 PAGE 155

OI_SetRampT

Syntax OI_API OI_SetRampT(int nRamp)

OI_API OI_SetRampS(int nRamp)

Description Specifies which pre-defined acceleration / deceleration ramp is in use for the
axis.

Parameters nRamp Identifies the pre-defined ramp to be used.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments Three pre-defined tables may be selected for a given axis, as indicated by the
nRamp parameter:

nRamp value Acceleration

0 Slow

1 Medium

2 Fast

See Also OI_GetRampF, OI_SetRampXY, OI_SetRampF, OI_SetAxisRamp

OI_SetUserLimitsT

Syntax OI_API OI_SetUserLimitsT(double dMin, double dMax)

OI_API OI_SetUserLimitsS(double dMin, double dMax)

Description Sets user-defined limits of travel along the axis.

Parameters dMin The minimum coordinate for the axis, in microns.

dMax The maximum coordinate for the axis, in microns.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_SetUserLimitsT functions allows “soft” limits to be set at any point
along the T axis. Once the soft limits are set, the OASIS controller will not allow
any movement outside of these limit values.

Note that the soft limits are distinct from the physical limit switches of the stage.

 Version 3.1.3 OASIS4I DLL Manual PAGE 156

The “hard” physical limit switches provide direct electronic feedback to the
OASIS controller indicating the physical limits of travel available for the stage.

When using the OI_InitializeTRange function to initialise the range of travel
and position of the stage, the OASIS controller automatically sets the current
position to 0 and also sets the T user limits to positions based on the ranges
passed to the function.

See Also OI_GetUserLimitsT, OI_InitializeTRange

OI_StepT

Syntax OI_API OI_StepT(double dDistance, int nWait)

OI_API OI_StepS(double dDistance, int nWait)

Description Moves a relative distance from the current position.

Parameters dDistance The desired distance for the move, in microns.

nWait A flag indicating whether the function waits for the
move to be completed before returning.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments If the nWait parameter is set to 0 for the call, the function returns immediately,
i.e., it does not wait for the move to complete. You can use the
OI_WaitForStoppedT function also to delay execution until a move is
complete.

See Also OI_WaitForStoppedT, OI_MoveToT

OI_WaitForStoppedT

Syntax OI_API OI_ WaitForStoppedT (void)

OI_API OI_ WaitForStoppedS (void)

Description Waits for the axis to stop moving.

Parameters None.

Return OI_OK if successful.

OASIS4I DLL Manual Version 3.1.3 PAGE 157

Value
If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_WaitForStoppedT function is useful after any T axis move functions
are called with zero wait parameters. OI_WaitForStoppedT will not return until
the T axis has completed its movement.

See Also OI_StepT, OI_MoveToT

Encoders and Closed-loop Operation
The OASIS controller supports encoder signals inputs for the X, Y, Z and F axes. Encoders
provide positional feedback from rotary, linear, or grid encoder devices, which can be used by
the OASIS to provide accurate position information as well as for closed-loop operations to
improve movement precision.

The presence and specifications of encoders are configured within the OASIS flash memory,
and must be set using the OASIS Flash Memory Configuration utility application. The OASIS
software library includes facilities for enquiring about the encoder setup, enabling whether
encoder feedback is to be used for position information, and defining closed-loop operation.

OI_GetAxisEncoderEnabled

Syntax OI_API OI_GetAxisEncoderEnabled(int AxisID, LPBOOL lpbEnabled,
LPBOOL lpbAutoCorrect)

Description Retrieves the status of the encoder counter enabling.

Parameters AxisID The desired axis (see the introduction of this section
for the appropriate constants).

lpbEnabled Returns whether the encoder counter is enabled.

lpbAutoCorrect Returns whether moves are automatically corrected
to the nearest encoder position.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments If encoders are fitted, their use by the OASIS controller may be enabled or
disabled via software. The OI_GetAxisEncoderEnabled and
OI_SetAxisEncoderEnabled functions deal with these settings.

 Version 3.1.3 OASIS4I DLL Manual PAGE 158

See Also OI_SetAxisEncoderEnabled, OI_GetAxisEncoderFitted,
OI_GetAxisEncoderStepSize, OI_SetEncoderEnabledXY,
OI_GetEncoderEnabledXY, OI_SetEncoderEnabledZ,
OI_GetEncoderEnabledZ

OI_GetAxisEncoderFitted

Syntax OI_API OI_GetAxisEncoderFitted(int AxisID, LPBOOL lpbFitted)

Description Retrieves whether an encoder has been configured as fitted for a given axis.

Parameters AxisID The desired axis (see the introduction of this section
for the appropriate constants).

lpbFitted Returns whether the encoder counter is enabled.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The Flash memory of the controller is used to indicate that an encoder has
been fitted as well as the encoder to microstep ratio. The
OI_GetAxisEncoderFitted function returns whether the configuration of
encoders for a given axis is found in the Flash memory.

See Also OI_GetAxisEncoderStepSize, OI_GetAxisEncoderEnabled,
OI_SetAxisEncoderEnabled, OI_SetEncoderEnabledXY,
OI_GetEncoderEnabledXY, OI_SetEncoderEnabledZ,
OI_GetEncoderEnabledZ

OI_GetAxisEncoderStepSize

Syntax OI_API OI_GetAxisEncoderStepSize(int AxisID, double *pdMicrons)

Description Retrieves the step size in microns for a given axis’ encoder, if fitted.

Parameters AxisID The desired axis (see the introduction of this section
for the appropriate constants).

pdMicrons Returns the encoder steps size, in microns.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

OASIS4I DLL Manual Version 3.1.3 PAGE 159

Comments The encoder factor, i.e., the number of microsteps per encoder step, found in
the Flash memory is used in combination with the axis calibration to return the
encoder step size in microns.

See Also OI_GetAxisEncoderFitted, OI_GetAxisEncoderEnabled,
OI_SetAxisEncoderEnabled, OI_SetEncoderEnabledXY,
OI_GetEncoderEnabledXY, OI_SetEncoderEnabledZ,
OI_GetEncoderEnabledZ

OI_GetEncoderClosedLoopResponseXYZ

Syntax OI_API OI_GetEncoderClosedLoopResponseXYZ (int* pnResponseX, int*
pnResponseY, int* pnResponse Z)

Description Returns the closed loop response rate for XYZ.

Parameters pnResponseX
pnResponseY
pnResponseZ

Returns the closed loop response rate for the
specified axis, as follows:

0 = slow

1 = fast

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments When using closed loop operations, the controller will compare the actual
position with the desired position at the end of each move. The
OI_GetEncoderClosedLoopResponceXYZ function returns the response rate
per axis (XYZ).

See Also OI_SetEncoderClosedLoopResponseXYZ, OI_SetEncoderEnabledZ,
OI_SetEncoderEnabledXY, OI_GetEncoderEnabledXY

OI_GetEncoderEnabledXY

Syntax OI_API OI_GetEncoderEnabledXY(LPBOOL pbEnabledX, int* pnTolX,
LPBOOL pbEnabledY, int* pnTolY)

Description Defines the encoder setup for the X and Y axes.

Parameters pbEnabledX Returns the enabled state of the X axis encoder.

pnTolX Returns the tolerance of the closed-loop mode for

 Version 3.1.3 OASIS4I DLL Manual PAGE 160

the X axis encoder.

pbEnabledY Returns the enabled state of the Y axis encoder.

pnTolY Returns the tolerance of the closed-loop mode for
the Y axis encoder.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments See the OI_SetEncoderEnabledXY function for further details regarding the
setup of the encoders and closed-loop operation.

See Also OI_SetEncoderEnabledXY, OI_SetEncoderEnabledZ,
OI_GetEncoderEnabledZ

OI_GetEncoderEnabledZ

Syntax OI_API OI_GetEncoderEnabledZ(BOOL bEnabledZ, int nTolZ)

Description Reads the encoder setup for the Z axis.

Parameters pbEnabledZ Returns the enabled state of the Z axis encoder.

pnTolZ Returns the tolerance of the closed-loop mode for
the Z axis encoder.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments See the OI_SetEncoderEnabledZ function for further details regarding the
setup of the encoders and closed-loop operation.

See Also OI_SetEncoderEnabledZ, OI_SetEncoderEnabledXY,
OI_GetEncoderEnabledXY

OI_ReadEncoderModule

Syntax OI_API OI_ReadEncoderModule(LPWORD pwInfo, LPWORD pwOptions,
LPWORD pwOutputPulseWidth_usec,
LPDWORD pdwComparitor1, LPDWORD pdwComparitor2,
LPDWORD pdwReserved, LPDWORD pdwReserved2)

Description Retrieves the information for the BLUE-EXPIO triggering.

OASIS4I DLL Manual Version 3.1.3 PAGE 161

Parameters pwInfo BLUE-EXPIO module ID Register, 8 bits,
provides Module/Altera version information -
0xFF = Module not fitted.

pwOptions BLUE-EXPIO control register value.

pwOutputPulseWidth_usec Output pulse width, in microseconds.

pdwComparitor1 Comparator 1 interval, in encoder counts.

pdwComparitor2 Comparator 2 interval, in encoder counts.

pdwReserved,
pdwReserved2

Unused.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments See OI_SetEncoderModule for details regarding the BLUE-EXPIO operation.

See Also OI_SetEncoderModule

OI_SetEncoderClosedLoopResponseXYZ

Syntax OI_API OI_SetEncoderClosedLoopResponseXYZ (int nResponseX, int
nResponseY, int nResponse Z)

Description Specifies the closed loop response rate for XYZ.

Parameters nResponseX
nResponseY
nResponseZ

The closed loop response rate for the specified axis,
as follows:

0 = slow

1 = fast

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments When using closed loop operations, the controller will compare the actual
position with the desired position at the end of each move. The final correction
is by default at a slow rate, but the OI_SetEncoderClosedLoopResponceXYZ
function allows you to specify either fast or slow response per axis (XYZ).

See Also OI_GetEncoderClosedLoopResponseXYZ, OI_SetEncoderEnabledZ,
OI_SetEncoderEnabledXY, OI_GetEncoderEnabledXY

 Version 3.1.3 OASIS4I DLL Manual PAGE 162

OI_SetEncoderEnabledXY

Syntax OI_API OI_SetEncoderEnabledXY(BOOL bEnabledX, int nTolX, BOOL
bEnabledY, int nTolY)

Description Defines the encoder setup for the X and Y axes.

Parameters bEnabledX Enables or disables use of encoder feedback on the
X axis. When enabled, all read operations for the X
axis will use encoder counter data.

nTolX Sets the tolerance for X axis closed-loop operation,
as follows:

0 = Closed-loop disabled, encoders only
used for position information.

>0 = Closed-loop enabled, encoder
information will be used during move
operations to ensure position is maintained
to within the given counter resolution.

bEnabledY Enables or disables use of encoder feedback on the
Y axis. When enabled, all read operations for the Y
axis will use encoder counter data.

nTolY Sets the tolerance for Y axis closed-loop operation,
as follows:

0 = Closed-loop disabled, encoders only
used for position information.

>0 = Closed-loop enabled, encoder
information will be used during move
operations to ensure position is maintained
to within the given counter resolution.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The encoder signals may be used simply as a more accurate means of
determining the current position, or they can be used to actively monitor that
movements to a given position are ensured using the encoder feedback.

When in closed-loop mode, the OASIS controller will continuously monitor the
current encoder information to ensure that the desired current position is
maintained from external forces, such as hand movements of the stage
independent of the controller facilities, etc.

To configure the controller to use encoders just for position readout, but not for
closed-loop operation, set the enabled flag for the axis to TRUE and the
associated tolerance to zero.

OASIS4I DLL Manual Version 3.1.3 PAGE 163

When using the closed-loop mode, you may need to adjust the tolerance value
to minimize oscillation of the motor as the controller continuously applies
correctional movements. For instance, for high resolution encoders, small
vibration may cause slight chances in the encoder values. In these situations
the tolerance should be set sufficiently high so as to be larger than the vibration
variations seen on the system.

See Also OI_GetEncoderEnabledXY, OI_SetEncoderEnabledZ,,
OI_GetEncoderEnabledZ

OI_SetEncoderEnabledZ

Syntax OI_API OI_SetEncoderEnabledZ(BOOL bEnabledZ, int nTolZ)

Description Defines the encoder setup for the Z axis.

Parameters bEnabledZ Enables or disables use of encoder feedback on the
Z axis. When enabled, all read operations for the Z
axis will use encoder counter data.

nTolZ Sets the tolerance for Z axis closed-loop operation,
as follows:

0 = Closed-loop disabled, encoders only
used for position information.

>0 = Closed-loop enabled, encoder
information will be used during move
operations to ensure position is maintained
to within the given counter resolution.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The encoder signals may be used simply as a more accurate means of
determining the current position, or they can be used to actively monitor that
movements to a given position are ensured using the encoder feedback.

When in closed-loop mode, the OASIS controller will continuously monitor the
current encoder information to ensure that the desired current position is
maintained from external forces, such as hand movements of the stage
independent of the controller facilities, etc.

To configure the controller to use encoders just for position readout, but not for
closed-loop operation, set the enabled flag for the axis to TRUE and the
associated tolerance to zero.

When using the closed-loop mode, you may need to adjust the tolerance value
to minimize oscillation of the motor as the controller continuously applies
correctional movements. For instance, for high resolution encoders, small
vibration may cause slight chances in the encoder values. In these situations

 Version 3.1.3 OASIS4I DLL Manual PAGE 164

the tolerance should be set sufficiently high so as to be larger than the vibration
variations seen on the system.

See Also OI_GetEncoderEnabledZ, OI_SetEncoderEnabledXY,
OI_GetEncoderEnabledXY

OI_SetEncoderModule

Syntax OI_API OI_SetEncoderModule (WORD wOutputPulseWidth_usec,
WORD wComparitor1On, DWORD dwComparitor1Value,
WORD wComparitor2On, DWORD dwComparitor2Value,
WORD wReserved, DWORD dwReserved, WORD wReserved2,
DWORD dwReserved2, WORD wOptions)

Description Defines the operation of the BLUE-EXPIO comparitors.

Parameters wOutputPulseWidth The output signal pulse width, in microseconds.

wComparitor1On Enables Comparator 1 output. Set to 1 to enable,
0 (zero) to disable.

dwComparitor1Value The encoder count period for the output of
Comparator 1.

wComparitor2On Enables Comparator 2 output. Set to 1 to enable,
0 (zero) to disable.

dwComparitor2Value The encoder count period for the output of
Comparator 2.

wReserved,
dwReserved,
wReserved2,
dwReserved2

Unused.

wOptions BLUE-EXPIO control register parameters.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OASIS-blue controller, when fitted with the BLUE-EXPIO encoder and
trigger module, provides advanced functions for synchronizing motion control
with external device triggers.

The OI_SetEncoderModule function allows the BLUE-EXPIO module’s trigger
output logic to be configured. The BLUE-EXPIO has two general purpose
comparators that may be used to accumulate encoder input signals and send
output trigger pulses at user-specified intervals.

Comparator 1 may be assigned to either X or F axis encoder inputs, while

OASIS4I DLL Manual Version 3.1.3 PAGE 165

Comparator 2 may be assigned to either Y or F axis encoder inputs, as
specified by wOptions bits 8 and 9, respectively.

The encoder signals may be either RS422 or TTL, as set by the wOptions bits
4-7 (see table below). The output pulse width is specified in microseconds.

The ultimate aim is to provide hardware-based synchronization of output trigger
signals to positions on any of the axes of the OASIS-blue controller. One
application for instance is to enhance image acquisition by allow continuous
movement with trigger synchronization of a digital camera while moving X or Y,
for mosaic image acquisition, or Z, for Z-stack acquisition.

The BLUE-EXPIO control register defines the behaviour of the trigger output
signals. The control WORD bits are defined as follows:

wOptions Bit Meaning

9 Comparator 2 input select.
0 - Comparator 2 generated from Y input
1 - Comparator 2 generated from Z input

8 Comparator 1 input select.
0 - Comparator 1 generated from X input
1 - Comparator 1 generated from F input

7 F encoder input type.
0 - RS422
1 – TTL

6 Z encoder input type.
0 - RS422
1 – TTL

5 Y encoder input type.
0 - RS422
1 – TTL

4 X encoder input type.
0 - RS422
1 - TTL

[3..2] Position latch function.
0 – XYZF position latch via DSP
1 – XYZF position latch via trigB input on BLUE-
CONNECT PCB.
2 – XYZF position latch via trigA input on BLUE-
CONNECT PCB.

[1..0] General-purpose comparator function select.
0 – Comparator trigger on X axis.
1 – Comparator trigger on Y axis.
2 – Comparator trigger on Z axis.

 Version 3.1.3 OASIS4I DLL Manual PAGE 166

3 – Comparator trigger on X or Y axis.

See Also OI_ReadEncoderModule

Automatic Focus
Automatic focus can be performed automatically by the OASIS controller providing that the
OASIS-AF option is installed and a suitable video camera is fitted to the system.

OI_AutoFocus

Syntax OI_API OI_AutoFocus(void)

Description Performs an automatic focus using the current autofocus parameters.

Parameters None.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_AutoFocus function returns immediately. To wait until the autofocus
operation is complete, follow the call to OI_AutoFocus with a call to
OI_WaitForAutoFocus.

See Also OI_SetAutoFocus, OI_AutoFocusEx, OI_WaitForAutoFocus

OI_AutoFocus_Fine

Syntax OI_API OI_AutoFocus_Fine(double dRange, int nSamples, double
dStepSize)

Description Performs a fine focus, by searching for the optimal focus from the current
position.

Parameters dRange The range of positions over which to search for
focus.

nSamples The number of focus threshold measurements to
average at each position.

dStepSize The Z step distance between discrete moves during

OASIS4I DLL Manual Version 3.1.3 PAGE 167

the autofocus operation.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_AutoFocus_Fine function differs from the OI_AutoFocusEx function.
Instead of the continuous sweep through the specified autofocus search range,
the OI_AutoFocus_Fine function uses a searching algorithm from the current
Z position to fine the best focus. The algorithm may be summarised as follows:

1. Measure the current focus score;

2. Step in a given direction, and continue while the focus score improves;

3. If no improvement was seen in the direction of Step 2, step in the
opposite direction while the focus score improves.

The dStepSize parameter specifies the distance to move between
measurements of the focus score. The nSamples parameter allows focus
score values to be averaged at each measurement, reducing the effects of
noise.

The searching is limited by the dRange parameter, preventing the focus
operation from moving farther than a given distance.

In some situations, this may produce more accurate results, although the
overall time taken to achieve focus is usually increased.

See Also OI_WaitForAutoFocus, OI_AutoFocusEx, OI_AutoFocus

OI_AutoFocus_Step

Syntax OI_API OI_AutoFocus_Step(double dRange, int nSpeed, int nTolerance,
double dStepSize)

Description Performs a stepwise automatic focus.

Parameters dRange The range of positions over which to search for
focus.

nSpeed The cruise speed at which the Z axis is moved
during the focus search.

nTolerance The peak-definition tolerance value.

dStepSize The Z step distance between discrete moves during
the autofocus sweep.

Return OI_OK if successful.

 Version 3.1.3 OASIS4I DLL Manual PAGE 168

Value
If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_AutoFocus_Step function differs from the OI_AutoFocusEx function.
Instead of the continuous sweep through the specified autofocus search range,
the OI_AutoFocus_Step function moves through the range in discrete steps,
as given by the dStepSize parameter.

In some situations, this may produce more accurate results, although the
overall time taken to achieve focus is usually increased.

See Also OI_WaitForAutoFocus, OI_AutoFocusEx, OI_AutoFocus

OI_AutoFocusEx

Syntax OI_API OI_AutoFocusEx(double dRange, int nSpeed, int nTolerance)

Description Performs an automatic focus using the specified parameters.

Parameters dRange The range of positions over which to search for
focus.

nSpeed The cruise speed at which the Z axis is moved
during the focus search.

nTolerance The peak-definition tolerance value.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_AutoFocusEx function returns immediately. To wait until the
autofocus operation is complete, follow the call to OI_AutoFocus with a call to
OI_WaitForAutoFocus.

See Also OI_AutoFocus, OI_SetAutoFocus, OI_WaitForAutoFocus

OI_GetAutoFocus

Syntax OI_API OI_GetAutoFocusThreshold(double* pdRange, int* pnSpeed, int*
pnTolerance)

Description Retrieves the current AutoFocus settings.

Parameters pdRange The returned range of travel for the autofocus, in
microns.

OASIS4I DLL Manual Version 3.1.3 PAGE 169

pnSpeed The returned cruise speed at which the focus is
moved.

pnTolerance The returned peak-finding tolerance value.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments See the Comments for the OI_AutoFocusEx for more information about the
AutoFocus settings.

See Also OI_AutoFocusEx, OI_GetAutoFocusThreshold

OI_GetAutoFocusEx

Syntax OI_API OI_GetAutoFocusEx(double* pdRange, int* pnSpeed, int*
pnTolerance, double *pdStepSize)

Description Retrieves the current AutoFocus extended settings.

Parameters pdRange The range of positions over which to search for
focus.

pnSpeed The cruise speed at which the Z axis is moved
during the focus search.

pnTolerance The peak-definition tolerance value.

pdStepSize The step size in microns between samples.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_GetAutoFocusEx function extends the OI_GetAutoFocus function by
also returning the fine focus step size.

See Also OI_AutoFocusEx, OI_AutoFocus_Fine, OI_AutoFocus_Step,
OI_AutoFocus, OI_SetAutoFocusEx, OI_SetAutoFocus,
OI_WaitForAutoFocus

OI_GetAutoFocusThreshold

Syntax OI_API OI_GetAutoFocusThreshold(int* pnThresh)

 Version 3.1.3 OASIS4I DLL Manual PAGE 170

Description Retrieves the current AutoFocus threshold value.

Parameters pnThresh The returned threshold value, ranging from 0 to 255.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments See the Comments for the OI_SetAutoFocusThreshold for more information
about the AutoFocus threshold.

See Also OI_SetAutoFocusThreshold

OI_GetFineFocusSamples

Syntax OI_API OI_GetFineFocusSamples(int* pnSamples)

Description Retrieves the number of focus score samples to be taken at each step in the
fine focus operation.

Parameters nSamples The number of focus score samples.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments See the OI_SetFineFocusSamples function for a description of the focus
samples.

See Also OI_SetFineFocusSamples, OI_AutoFocus_Fine

OI_ReadFocusProfile

Syntax OI_API OI_ReadFocusProfile(double* pdScores, double* pdZPos, int
nSize, int* pnSamples)

Description Reads the AutoFocus profile from the last automatic focus operation.

Parameters pdScores Pointer to an array, of length nSize, to receive the
focus score values.

pdZPos Pointer to an array, of length nSize, to receive the Z
position values.

nSize The length of the pdScores and pdZPos arrays.

OASIS4I DLL Manual Version 3.1.3 PAGE 171

pnSamples The returned actual number of samples.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The automatic focus works by sweeping over a given Z range whilst
continuously sampling the focus score. This process generates a list of Score
vs. Z-Position value pairs.

The OI_ReadFocusProfile function will return these pairs of values in two
arrays, one for the focus scores (returned in the pdScores array) and another
for the corresponding Z positions (returned in the pdZPos array).

The actual number of samples achieved during the automatic focus process is
dictated by the video rate, the size of the Z range used, and the speed at which
the Z axis was driven. A larger Z range and/or a slower speed will allow more
samples to be taken.

The actual number of samples taken during the last AutoFocus operation is
returned in the pnSamples value. The nSize parameter is passed into the
function by the caller to indicate the size of the destination arrays. If the total
number of samples taken during the AutoFocus was greater than the nSize
value, only the first nSize values are returned in the arrays. If the total number
of samples is less than the nSize value, only the first pnSamples values contain
valid data.

See Also OI_AutoFocus, OI_AutoFocusEx, OI_AutoFocus_Step, OI_SetAutoFocus

OI_ReadFocusScore

Syntax OI_API OI_ReadFocusScore(double* pdScore)

Description Read the current focus score calculation from the incoming video source.

Parameters pdScore The returned focus score.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments Higher focus score values indicate greater sharpness of focus.

See Also OI_ReadFocusScoreEx, OI_SetAutoFocusThreshold

 Version 3.1.3 OASIS4I DLL Manual PAGE 172

OI_ReadFocusScoreEx

Syntax OI_API OI_ReadFocusScoreEx(double* pdScore, double *pdZPos)

Description Read the current focus score calculation from the incoming video source and
the Z axis position corresponding to that reading.

Parameters pdScore The returned focus score.

pdZPos The returned Z position.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments Higher focus score values indicate greater sharpness of focus.

See Also OI_ReadFocusScore, OI_SetAutoFocusThreshold

OI_RequestAutoFocusStatus

Syntax OI_API OI_RequestAutoFocusStatus(LPWORD pwFinished, LPWORD
pwSuccess, LPWORD pwNumSamples)

Description Read the status of the last automatic focus operation.

Parameters pwFinished The returned status indicating whether the previous
autofocus is complete.

pwSuccess The returned success status of the last autofocus.

pwNumSamples The returned number of video samples taken during
the autofocus.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_RequestAutoFocusStatus function returns the details regarding a
previously executed autofocus operation.

See Also OI_AutoFocus, OI_AutoFocusEx, OI_AutoFocus_Step

OASIS4I DLL Manual Version 3.1.3 PAGE 173

OI_SetAutoFocus

Syntax OI_API OI_SetAutoFocus(double dRange, int nSpeed, int nTolerance)

Description Sets the default focus parameters.

Parameters dRange The range of positions over which to search for
focus.

nSpeed The cruise speed at which the Z axis is moved
during the focus search.

nTolerance The peak-definition tolerance value.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The focus search will be performed using a continuous sweep over the given
micron range at the indicated cruise speed. The tolerance value may be
adjusted for improved peak-finding.

See Also OI_AutoFocus, OI_AutoFocusEx

OI_SetAutoFocusEx

Syntax OI_API OI_SetAutoFocusEx(double dRange, int nSpeed, int nTolerance,
double dStepSize)

Description Sets the default focus parameters, including step size.

Parameters dRange The range of positions over which to search for
focus.

nSpeed The cruise speed at which the Z axis is moved
during the focus search.

nTolerance The peak-definition tolerance value.

dStepSize The step size in microns between samples.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments This function extends the OI_SetAutoFocus function by adding the step size
parameter that is used with the OI_AutoFocus_Step and
OI_AutoFocus_Fine functions.

 Version 3.1.3 OASIS4I DLL Manual PAGE 174

See Also OI_GetAutoFocusEx, OI_AutoFocus, OI_SetAutoFocus

OI_SetAutoFocusThreshold

Syntax OI_API OI_SetAutoFocusThreshold(int nThresh)

Description Sets the threshold value used when generating the focus score from the
incoming video signal.

Parameters nThresh The threshold value, ranging from 0 to 255.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The AutoFocus threshold may be used to reduce the effects of noise present in
the image when calculating the focus score.

The focus score is generated by measuring the overall sharpness of edges in
the image. Noise in the image may introduce false peaks in the AutoFocus
curve measured during automatic focus operation.

Increasing the AutoFocus threshold may reduce the effect of noise, and
therefore improve the performance of automatic focus.

See Also OI_GetAutoFocusThreshold, OI_AutoFocus, OI_AutoFocusEx,
OI_AutoFocus_Step

OI_SetFineFocusSamples

Syntax OI_API OI_SetFineFocusSamples(int nSamples)

Description Sets the number of focus score samples to be taken at each step in the fine
focus operation.

Parameters nSamples The number of focus score samples.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_AutoFocus_Fine function will perform an autofocus by searching from
the current position to determine if the focus improves. This is made in discrete
steps of a given size. You can use the OI_SetFineFocusSamples function to
set the default number of focus score readings to be made at each step. These

OASIS4I DLL Manual Version 3.1.3 PAGE 175

readings will be averaged to produce the final score. Higher samples may
reduce the effects of noise in the video signal.

See Also OI_GetFineFocusSamples, OI_AutoFocus_Fine

OI_WaitForAutoFocus

Syntax OI_API OI_WaitForAutoFocus(void)

Description Waits for any automatic focus operations to complete before returning.

Parameters None.

Return
Value

OI_OK if successful.

OI_ABORT if aborted by the user.

OI_TIMEOUT if the operation times out before a focus is found.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments In order to facilitate multitasking, all automatic focus functions return
immediately. This, for instance, allows an AutoFocus operation to continue
while the PC software is able to perform other, non-automation critical,
functions such as the analysis of a previously acquired image or writing of data
to disk.

However, at some point the application will need to ensure the automatic focus
is complete. The OI_WaitForAutoFocus accomplishes this, as the function
will not return until either the autofocus completes normally, is terminated by the
user using the Escape key, or times out.

See Also OI_AutoFocus, OI_AutoFocusEx, OI_AutoFocus_Step

Predictive Focus Functions
The OASIS controller includes facilities to maintain a predicted focus position based on a first-
order fit of focus Z-position as a function of X- and Y-positions. By supplying the OASIS library
with three XYZ position values defining the in-focus Z-position at each XY location, the
predicted focus plane can be calculated and used to determine the predicted, or expected, Z
position as a function of X and Y. The OI_SetPredictiveZ function is used to define the three
unique XYZ measurements defining the plane.

 Version 3.1.3 OASIS4I DLL Manual PAGE 176

Once defined, the OI_GetPredictiveZ function will return the expected Z position for a given
XY location.

Additionally, the OASIS controller provides an automatic predictive focus tracking facility,
where the controller continuously monitors the XY and Z position, ensuring that the focus
position is maintained in the expected predictive focus plane. The OI_SetAutoPredictiveZ
function is used to enable and disable automatic predictive focus tracking.

More than 3 predictive focus points may also be used. The OI_SetMultiPredictiveZ function
allows up to 256 points to be defined. The OASIS library divides the set of points into triangular
regions, each region defining a focus plane within its 3 vertices. The OI_UpdatePredictiveZ
function may be used to ensure the currently active plane corresponds to the current XY
location.

Note that predictive focus is only available when the focus drive is being controlled directly by
the OASIS. Predictive focus is not available for other focus drive controllers supported by the
OASIS DLL, such as the Leica Microsystems DM microscope, Olympus BX-61, or the Leica
Microsystems MZ motorfocus unit.

OI_GetAutoPredictiveZ

Syntax OI_API OI_GetAutoPredictiveZ (LPBOOL pbFlag, LPBOOL pbValid,
LPDOUBLE pdZ)

Description Returns the status of the automatic predictive focus tracking.

Parameters pbFlag Flag indicating whether automatic predictive focus
tracking is enabled or disabled.

pbValid Flag indicating whether the predictive focus setup is
valid.

pdZ The predicted focus position for the current XY
location.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_GetAutoPredictiveZ function is used to determine whether the
automatic predictive focus tracking is currently enabled and whether the
predictive focus setup is valid. The function also returns the predicted focus
value for the current XY position.

See the OI_SetAutoPredictiveZ for a full description of automatic focus
tracking facilities.

See Also OI_SetAutoPredictiveZ , OI_SetPredictiveZ

OASIS4I DLL Manual Version 3.1.3 PAGE 177

OI_GetCoincDomain

Syntax OI_API OI_GetCoincDomain(double X, double Y, int* pnDomainIndex)

Description Returns the predicted Z domain for the given X and Y position values.

Parameters X The X position, in microns.

Y The Y position, in microns.

pnDomainIndex Returns the predicted focus domain index.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_GetCoincDomain function returns the index of the predictive focus
domain that coincides with the given X and Y stage location. The index
corresponds to the domain list as returned by OI_GetPredictiveZDomains.

See Also OI_GetPredictiveZDomains

OI_GetMultiPredictiveZ

Syntax OI_API OI_GetMultiPredictiveZ (int* pnMethod, int* pnPoints,
double *xvals, double *yvals, double *zvals)

Description Returns the predictive focus information.

Parameters pnMethod Returns the method to use to divide the
sample area into regions.

pnPoints Returns the number of XYZ points used to
define the predictive focus map. The
maximum number of points supported is 256.

xvals Pointer to an array to receive the X-axis
positions, in microns, representing the
measurement X positions.

yvals Pointer to an array to receive the Y-axis
positions, in microns, representing the
measurement Y positions.

zvals Pointer to an array to receive the Z-axis
positions, in microns, representing the
measurement Z positions.

Return Value OI_OK if successful.

 Version 3.1.3 OASIS4I DLL Manual PAGE 178

If unsuccessful, a combination of error codes may be returned to
indicate the reason for failure.

Comments See the OI_SetMultiPredictiveZ for more information regarding multi-
point predictive focus.

See Also OI_SetMultiPredictiveZ, OI_UpdatePredictiveZ, OI_InitializeZ,
OI_MoveToZ

OI_GetPredictiveFlag

Syntax OI_API OI_GetPredictiveFlag (LPBOOL pbFlag)

Description Returns whether the predictive focus has been previously defined.

Parameters pbFlag Returns TRUE if the predictive focus has been
previously setup.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_GetPredictiveFlag function returns whether the predictive focus has
been previously set up.

See Also OI_SetPredictiveZ, OI_SetPredictiveFlag

OI_GetPredictiveZ

Syntax OI_API OI_GetPredictiveZ (double X, double Y, double *pZ, int *pnStatus)

Description Returns the predicted Z position for the given X and Y position values.

Parameters X The X position, in microns.

Y The Y position, in microns.

pZ Returns the predicted focus position value.

pnStatus Returns the predictive focus status, as define in the
Comments below.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the

OASIS4I DLL Manual Version 3.1.3 PAGE 179

reason for failure.

Comments The OI_GetPredictiveZ function returns the predicted focus position for a given
X and Y stage location, as well as the current status of the predictive focus
setup.

nStatus value Meaning

0 The predictive focus has been defined
and is valid.

1 Invalid predictive focus coefficients. This
typically indicates the input positions set
via the OI_SetPredictiveZ function did
not contain three unique XYZ locations.

2 The predictive focus has not been
defined.

See Also OI_SetPredictiveZ

OI_GetPredictiveZDomains

Syntax OI_API OI_ GetPredictiveZDomains (int* pnDomains, double* ax,
double* ay, double* az, double* bx, double* by, double* bz,
double* cx, double* cy, double* cz)

Description Returns the predictive focus domains.

Parameters pnDomains Returns the method to use to divide the
sample area into regions.

ax, ay, az Pointers to arrays to receive the first corner
data, i.e., vertex a.

bx, by, bz Pointers to arrays to receive the second corner
data, i.e., vertex b.

cx, cy, cz Pointers to arrays to receive the third corner
data, i.e., vertex c.

Return Value OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate
the reason for failure.

Comments When using multi-point predictive focus, the OASIS library divides the
sample area into triangular regions. This triangulation approximates the
surface of the sample, with each triangle defining a facet where a linear
interpolation of the plane is used to track focus.

Use the OI_GetPredictiveZDomains function to retrieve the

 Version 3.1.3 OASIS4I DLL Manual PAGE 180

triangulation data. Each domain is defined by three sets of XYZ
positions, i.e., the vertices of the triangle as defined by the
OI_SetMultiPredictiveZ locations. Since vertices are shared by
adjacent triangles, the number of domains is greater than the number of
predictive focus points.

As shown in the diagram above, a given triangular domain has three
vertices a,b,c, each of which being defined by an XY stage location and
the Z focus at that point. These vertices correspond to predictive focus
points, but in this case are associated with the domains found by the
triangulation of those points.

See Also OI_SetMultiPredictiveZ, OI_UpdatePredictiveZ,
OI_GetCoincDomain

OI_GetPredictiveZOffset

Syntax OI_API OI_GetPredictiveZOffset (double* pdOffset)

Description Returns the fixed offset for predictive focus operations..

Parameters dOffset The current offset, in microns.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments You can apply a fixed offset to predictive focus operations, if desired, using
OI_SetPredictiveZOffset. Use OI_GetPredictiveZOffset to get the current
value for the offset. The default is zero.

See Also OI_SetPredictiveZOffset, OI_SetPredictiveZ, OI_SetPredictiveFlag

Domain N

a = { ax[N], ay[N], az[N] }

b = { bx[N],by[N], bz[N] }

c ={ cx[N],cy[N], cz[N] }

OASIS4I DLL Manual Version 3.1.3 PAGE 181

OI_InvalidatePredictiveZ

Syntax OI_API OI_InvalidatePredictiveZ()

Description Forces the current predictive focus setup to be invalid.

Parameters None.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments Automatic predictive focus tracking requires first that the predictive focus setup
be defined using three sets of XYZ positions. The OI_InvalidatePredictiveZ
function sets the predictive focus in an invalid, i.e., not set up, state.

See Also OI_SetPredictiveZ, OI_GetAutoPredictiveZ

OI_SetAutoPredictiveZ

Syntax OI_API OI_SetAutoPredictiveZ (BOOL bFlag)

Description Turns on automatic predictive focus tracking.

Parameters bFlag Flag that enables and disables automatic predictive
focus tracking.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

In particular, the OI_INVALIDCONFIG bit will be set if the Z-axis software limits
are not set.

Comments The OASIS controller can automatically perform movement of the Z-axis to
ensure the Z-position is maintained to the predicted focus position based the
current XY position. When enabled, this predictive focus tracking will work
during software commanded moves as well as during joystick operations, for
high-speed maintenance of the predicted focus position.

The OI_SetAutoPredictiveZ function enables and disabled automatic
predictive focus tracking.

Note that any commanded movement of the Z-axis, either by software or
joystick/digiknob, will cause the automatic predictive focus tracking to be
disabled.

 Version 3.1.3 OASIS4I DLL Manual PAGE 182

Also, the Z-axis software limits must be set before attempting to enable
automatic predictive focus.

See Also OI_SetPredictiveZ, OI_GetAutoPredictiveZ, OI_SetUserLimitsZ,
OI_InitializeZ

OI_SetMultiPredictiveZ

Syntax OI_API OI_SetMultiPredictiveZ (int nMethod, int nPoints, double
*xvals, double *yvals, double *zvals)

Description Sets the predictive focus locations using more than three points.

Parameters nMethod The method to use to divide the sample area
into regions. Use OI_PF_MULTI_PLANE.

nPoints The number of XYZ points used to define the
predictive focus map, i.e., the length of arrays
xvals, yvals, and zvals. The maximum number
of points supported is 256.

xvals Pointer to array of X-axis positions, in microns,
representing the measurement X positions.

yvals Pointer to array of Y-axis positions, in microns,
representing the measurement Y positions.

zvals Pointer to array of Z-axis positions, in microns,
representing the measurement Z positions.

Return Value OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to
indicate the reason for failure.

Comments The OASIS controller’s Z-axis drive includes the capability of fitting the
plane of focus as a function of XY location. This is based on
measurements of Z-axis in-focus positions take at three XY locations.
Given these three sets of XYZ positions, this plane can be calculated,
enabling the OASIS controller’s DSP to maintain the resulting Z position
continuously during XY movements.

The OASIS library supports more than just three points using the
OI_SetMultiPredictiveZ function. The function accepts up to 256 points
defining an in-focus Z position for each XY location. The library then
uses these points to define regions, each a facet defined by a plane.

Use method OI_PF_MULTI_PLANE to perform this sub-division.

When more than 3 XYZ locations are used, calls to OI_GetPredictiveZ
result in resolution of the sub-region corresponding to the given XY

OASIS4I DLL Manual Version 3.1.3 PAGE 183

position, with the returned predicted Z being the interpolated result in
that region.

When automatic tracking of focus is desired (e.g., using
OI_SetAutoPredictiveZ), calls to OI_UpdatePredictiveZ are required
to resolve the current region and updated the OASIS controller to that
region’s plane.

See Also OI_UpdatePredictiveZ, OI_InitializeZ, OI_MoveToZ

OI_SetPredictiveFlag

Syntax OI_API OI_SetPredictiveFlag (BOOL bFlag)

Description Sets the flag indicating whether the predictive focus has been previously
defined.

Parameters bFlag Sets the status of the predictive focus flag. Set to
FALSE to indicate that the predictive focus is no
longer valid.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_SetPredictiveFlag function may be used to programmatically set the
status of the predictive focus flag.

See Also OI_SetPredictiveZ, OI_SetPredictiveFlag

OI_SetPredictiveZ

Syntax OI_API OI_SetPredictiveZ (double *pX, double *pY, double *pZ)

Description Sets the predictive focus locations.

Parameters pX Pointer to array of three X-axis positions, in
microns, representing the measurement
locations X positions.

pY Pointer to array of three Y-axis positions, in
microns, representing the measurement
locations Y positions.

pZ Pointer to array of three Z-axis positions, in
microns, representing the measurement

 Version 3.1.3 OASIS4I DLL Manual PAGE 184

locations Z positions.

Return Value OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to
indicate the reason for failure.

Comments The OASIS controller’s Z-axis drive includes the capability of fitting the
plane of focus as a function of XY location. This is based on
measurements of Z-axis in-focus positions take at three XY locations.
Given these three sets of XYZ positions, this plane can be calculated,
enabling the OASIS controller’s DSP to maintain the resulting Z position
continuously during XY movements.

The OI_SetPredictiveZ function defines the predictive focus input
locations, allowing the OASIS library to calculate the plane of focus as a
function of XY stage. Three arrays of positions, one each for X, Y, and Z
axes provide the input locations, i.e., pX[0] gives the X position of the
first sampling location, pX[1] for the second sampling, and pX[2] for the
third sampling.

Thus the coordinate {pX[0], pY[0], pZ[0]} represents the first XYZ
location, {pX[1], pY[1], pZ[1]} is the second XYZ location, and {pX[2],
pY[2], pZ[2]} is the third XYZ location.

The effect of the OI_SetPredictiveZ function is to define the coefficients
of predictive focus for the current specimen. Calls to
OI_GetPredictiveZ will return the predicted Z value for the given XY
location. To enable automatic predictive focus tracking by the OASIS,
call OI_SetAutoPredictiveZ.

See Also OI_InitializeZ, OI_MoveToZ

OI_SetPredictiveZOffset

Syntax OI_API OI_SetPredictiveZOffset (double dOffset)

Description Sets the fixed offset for predictive focus operations.

Parameters dOffset The desired offset, in microns.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments You can apply a fixed offset to predictive focus operations, if desired using
OI_SetPredictiveZOffset.

OASIS4I DLL Manual Version 3.1.3 PAGE 185

See Also OI_GetPredictiveZOffset, OI_SetPredictiveZ, OI_SetPredictiveFlag

OI_UpdatePredictiveZ

Syntax OI_API OI_UpdatePredictiveZ (int nOption)

Description Forces the predictive focus region to be resolved for the current XY position.

Parameters nOption When set to 1, nOption causes the function to call
OI_SetAutoPredictiveZ when finished updating to
turn on predictive focus tracking.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments In a multi-plane situation where more than 3 predictive focus points are used,
the OI_UpdatePredictiveZ function may be used to ensure the current region
is kept current. The OASIS controller can automatically track the focus given a
plane, so when more than one plane is used, the OI_UpdatePredictiveZ
function should be called when necessary to ensure the correct plane is
currently active.

When the OI_SetAutoPredictveZ function has been previously called to
enable tracking, the nOption parameter may be zero, as the new plane will
automatically become active. If predictive focus tracking is not enabled, you
can set the nOption parameter to 1 to enable it within the
OI_UpdatePredictiveZ call.

See Also OI_SetMultiPredictiveZ, OI_SetAutoPredictiveZ, OI_SetPredictiveFlag

Video Camera Interface Functions
In addition to automatic focus facilities, OASIS-AF module also provides real-time
measurements on detected features in the video field of view. A detection setting may be
defined on the intensity of the video signal, allowing features of interested to be identified in the
signal. These detected features may then be measured to provide total area, maximum chord
length, and maximum gradient values at video rates.

This high-speed measurement provides substantial flexibility, as it allows specialized
calculations to be made for customized autofocus operations. Furthermore, the measurement
results can be used during the course of specimen scanning to identify very quickly if a given
field has any information. This allows an application to rapidly skip blank fields, without having
to incur the overhead of acquiring the image and apply measurements using software.

 Version 3.1.3 OASIS4I DLL Manual PAGE 186

The OASIS-AF settings that are involved in video measurements are:

 The video window size and position

 The detection thresholds for the odd and even video fields

 The detection phase—i.e. light or dark—for the odd and even video fields

A full frame of standard analog video is actually composed of two interlaced video fields. The
first video field reads the odd lines of video. A second pass reads the even lines of video. The
combined results of these two scans give a full video frame of information. Therefore, each
PAL video field is composed of 288 video lines, while NSTC video contains 240 lines. The
successive scans of these lines lead to the typical full-frame vertical resolutions of 576 lines for
PAL and 480 lines for NTSC.

Note that some modes of video results functions deal only with either the odd or even lines,
therefore the actual vertical resolution is half the video window’s vertical resolution (in pixels).

The OASIS-AF module allows each video field (i.e., the odd or even video scan lines) to be
treated separately. This means that you can define two distinct threshold values and phase
definitions (light or dark) corresponding to the two separate video fields. These two settings
are applied continuously to each successive video field by the OASIS-AF hardware, and the
results may be read rapidly at any time.

OI_GetVideoWindow

Syntax OI_API OI_GetVideoWindow(int* pnXStart, int* pnXStop, int* pnYStart,
int* pnYStop)

Description Reads the current settings for the video window placement.

Parameters pnXStart The start X value for the video window, in pixels.

pnXStop The stop X value for the video window, in pixels.

pnYStart The start Y value for the video window, in video field
lines.

pnYStop The stop Y value for the video window, in video field
lines.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The video window defines the region in which all video measurements are
made. This includes focus score calculations as well as detected area,
maximum chord length, and maximum gradient measurements.

The OASIS-AF hardware places some restrictions on the positions and sizes
that are possible for these settings.

OASIS4I DLL Manual Version 3.1.3 PAGE 187

The nXStart and nXStop values must be set on 4-pixel boundaries, e.g., 4, 8,
12, etc.

The nYStart and nYStop values are specified in terms of pixels For instance, a
PAL video field has a vertical resolution of 768 pixels, and an NTSC video field
has a vertical resolution of 480 pixels.

The nYStart video window Y start position is restricted to values from 0 to 254,
i.e. roughly the top half of the video field.

The nYStop video window Y stop position may take on any values up to the
size of the available video field, i.e., up to 767 for PAL video and up to 479 for
NTSC video signals.

See Also OI_SetVideoWindow, OI_GetAFFitted, OI_GetPCBStatus

OI_IsVideoDetected

Syntax OI_API OI_IsVideoDetected(BOOL* pbFound)

Description Reads whether a valid video signal has been detected.

Parameters pbFound Pointer to BOOL result indicating if video has been
detected.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The pbFound will be set to TRUE if an OASIS-AF module has been fitted and
an appropriate incoming video signal has been detected.

If no video signal is detected, or if an OASIS-AF module has not been fitted, the
pbFound parameter will be set to FALSE.

See Also OI_GetAFFitted, OI_ReadPCBStatus

OI_ReadVideoData

Syntax OI_API OI_ReadVideoData(LPWORD lpwStatus, LPDWORD pdwArea,
LPWORD pwMaxChord, LPWORD
pwMaxGradient)

Description Reads the current video measurement data.

Parameters lpwStatus The status of the video measurements, as

 Version 3.1.3 OASIS4I DLL Manual PAGE 188

described in the Comments below.

pdwArea The total count of pixels measured in the detected
phase.

pwMaxChord The pixel length of the longest chord in the detected
phase.

pwMaxGradient Not used.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The pnStatus variable indicates the video field for which the current results are
valid, and is one of the following values:

pnStatus Value Meaning

0 The video measurement data is not available.

1 The returned results are for the Odd video field.

2 The returned results are for the Even video field.

See Also OI_SetVideoSettings, OI_ReadVideoResults

OI_ReadVideoResults

Syntax OI_API OI_ReadVideoResults(int nMode, LPDWORD pdwArea, LPWORD
pwMaxChord)

Description Reads the video measurement results for the odd video field, even video field,
or a combination of both.

Parameters nMode Specifies the desired results, as described in the
Comments below.

pdwArea The total count of pixels measured in the detected
phase.

pwMaxChord The pixel length of the longest chord in the detected
phase.

Return
Value

OI_OK if successful.

OI_TIMEOUT if the desired results are not available within 200 msec.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

OASIS4I DLL Manual Version 3.1.3 PAGE 189

Comments The nMode parameter indicates which video field is to be read, using the
following values:

nMode Value Meaning

1 The function should return the Odd video field
results.

2 The function should return the Even video field
results.

3 The function should return a combination of the two
fields, i.e., the sum of the even and odd field area
measurements and the maximum of the even and
odd chord lengths are returned. This provides a
result for the entire video frame.

See Also OI_SetVideoSettings, OI_ReadVideoData

OI_ReadVideoResultsEx

Syntax OI_API OI_ReadVideoResultsEx(int nMode, LPDWORD pdwArea,
LPWORD pwMaxChord, LPWORD
pwMaxGradient)

Description Reads the extended video measurement results for the odd video field, even
video field, or a combination of both.

Parameters nMode Specifies the desired results, as described in the
Comments below.

pdwArea The total count of pixels measured in the detected
phase.

pwMaxChord The pixel length of the longest chord in the detected
phase.

pwMaxGradient The maximum gradient value in the detected phase.

Return
Value

OI_OK if successful.

OI_TIMEOUT if the desired results are not available within 200 msec.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The nMode parameter indicates which video field is to be read, using the
following values:

nMode Value Meaning

 Version 3.1.3 OASIS4I DLL Manual PAGE 190

1 The function should return the Odd video field
results.

2 The function should return the Even video field
results.

3 The function should return a combination of the two
fields, i.e., the sum of the even and odd field area
measurements and the maximum of the even and
odd chord lengths are returned. This provides a
result for the entire video frame.

See Also OI_SetVideoSettings, OI_ReadVideoData

OI_ReadVideoResultsXY

Syntax OI_API OI_ReadVideoResultsXY(int nMode, double* pdResults, double*
pdXPos, double* pdYPos)

Description Reads the stage XY position and the extended video measurement results for
the odd video field, even video field, or a combination of both.

Parameters nMode Specifies the desired results, as described in the
Comments below.

pdResults An array of doubles into which the video results are
to be copied.

pdXPos The position of the X Axis, in microns.

pdYPos The position of the Y Axis, in microns.

Return
Value

OI_OK if successful.

OI_TIMEOUT if the desired results are not available within the video timeout
period.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The nMode parameter indicates which video field is to be read, using the
following values:

nMode Value Meaning

1 The function should return the Odd video field
results.

2 The function should return the Even video field

OASIS4I DLL Manual Version 3.1.3 PAGE 191

results.

3 The function should return a combination of the two
fields, i.e., the sum of the even and odd field area
measurements and the maximum of the even and
odd chord lengths are returned. This provides a
result for the entire video frame.

The pdResults argument is a pointer to an array of doubles. The calling
application must ensure the array contains at least four elements. The video
results are returned in the array in this order:

pdResults Array Index Video Result Value

0 Focus score (full video frame)

1 Detected area

2 Detected maximum chord length

3 Detected maximum gradient

See Also OI_SetVideoSettings, OI_ReadVideoData, OI_ReadVideoResults,
OI_ReadVideoResultsEx, OI_ReadVideoResultsXYZF,
OI_ReadVideoResultsZ

OI_ReadVideoResultsXYZF

Syntax OI_API OI_ReadVideoResultsXYZF(int nMode, double* pdResults,
double* pdPositions)

Description Reads the stage XY position, focus Z position, and fourth axis position, as well
as the extended video measurement results for the odd video field, even video
field, or a combination of both.

Parameters nMode Specifies the desired results, as described in the
Comments below.

pdResults Array of doubles into which the video results are to
be copied.

pdPositions Array of doubles into which the position data is to be
copied.

Return
Value

OI_OK if successful.

OI_TIMEOUT if the desired results are not available within the video timeout
period.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

 Version 3.1.3 OASIS4I DLL Manual PAGE 192

Comments The nMode parameter indicates which video field is to be read, using the
following values:

nMode Value Meaning

1 The function should return the Odd video field
results.

2 The function should return the Even video field
results.

3 The function should return a combination of the two
fields, i.e., the sum of the even and odd field area
measurements and the maximum of the even and
odd chord lengths are returned. This provides a
result for the entire video frame.

The pdResults argument is a pointer to an array of doubles into which the video
results are copied. The calling application must ensure the array contains at
least four elements. The video results are returned in the array in this order:

pdResults Array Index Video Result Value

0 Focus score (full video frame)

1 Detected area

2 Detected maximum chord length

3 Detected maximum gradient

The pdPositions argument is a pointer to an array of doubles into which the
position data is copied. The calling application must ensure the array consists
of at least four elements. The position data is returned in the array in this order:

pdPositions Array Index Axis Position Value

0 X Axis position

1 Y Axis position

2 Z Axis position

3 F Axis position

See Also OI_SetVideoSettings, OI_ReadVideoData, OI_ReadVideoResults,
OI_ReadVideoResultsEx, OI_ReadVideoResultsXY,
OI_ReadVideoResultsZ

OASIS4I DLL Manual Version 3.1.3 PAGE 193

OI_ReadVideoResultsZ

Syntax OI_API OI_ReadVideoResultsZ(int nMode, double* pdResults, double*
pdZPos)

Description Reads the focus Z position and the extended video measurement results for
the odd video field, even video field, or a combination of both.

Parameters nMode Specifies the desired results, as described in the
Comments below.

pdResults An array of doubles into which the video results are
to be copied.

pdZPos The position of the Z Axis, in microns.

Return
Value

OI_OK if successful.

OI_TIMEOUT if the desired results are not available within the video timeout
period.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The nMode parameter indicates which video field is to be read, using the
following values:

nMode Value Meaning

1 The function should return the Odd video field
results.

2 The function should return the Even video field
results.

3 The function should return a combination of the two
fields, i.e., the sum of the even and odd field area
measurements and the maximum of the even and
odd chord lengths are returned. This provides a
result for the entire video frame.

The pdResults argument is a pointer to an array of doubles. The calling
application must ensure the array contains at least four elements. The video
results are returned in the array in this order:

pdResults Array Index Video Result Value

0 Focus score (full video frame)

1 Detected area

2 Detected maximum chord length

3 Detected maximum gradient

 Version 3.1.3 OASIS4I DLL Manual PAGE 194

See Also OI_SetVideoSettings, OI_ReadVideoData, OI_ReadVideoResults,
OI_ReadVideoResultsEx, OI_ReadVideoResultsXY,
OI_ReadVideoResultsXYZF

OI_SetVideoSettings

Syntax OI_API OI_SetVideoSettings(int nEvenPhase, int nEvenThreshold, int
nOddPhase, int nOddThreshold)

Description Sets the video measurement parameters for the Even and Odd video fields.

Parameters nEvenPhase Specifies the desired phase, either light or dark, for
the Even video fields.

nEvenThreshold Specifies the desired threshold, from 0 to 255, for
the Even video fields

nOddPhase Specifies the desired phase, either light or dark, for
the Odd video fields.

nOddThreshold Specifies the desired threshold, from 0 to 255, for
the Odd video fields.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments A full frame of video is composed of two video fields, one painting the odd lines,
the other painting the even ones.

The OASIS-AF module assigns each video field its own Phase and Threshold.
This provides for nearly simultaneous measurement of two distinct phases in
the incoming video signal.

The Phase parameter (nEvenPhase and nOddPhase) may be either of two
values:

Phase Value Meaning

0 Light objects are detected for measurement.
Features in the video signal are detected from the
brightest values (255) down to the value specified by
the Threshold parameter.

1 Dark objects are detected for measurement.
Features in the video signal are detected from the
darkest values (0) up to the value specified by the
Threshold parameter.

See Also OI_ReadVideoData, OI_ReadVideoResults

OASIS4I DLL Manual Version 3.1.3 PAGE 195

OI_SetVideoWindow

Syntax OI_API OI_SetVideoWindow(int nXStart, int nXStop, int nYStart, int
nYStop)

Description Sets the positions defining the video window placement.

Parameters nXStart The start X value for the video window, in pixels.

nXStop The stop X value for the video window, in pixels.

nYStart The start Y value for the video window, in video field
lines.

nYStop The stop Y value for the video window, in video field
lines.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The video window defines the region in which all video measurements are
made. This includes focus score calculations as well as detected area,
maximum chord length, and maximum gradient measurements.

The OASIS-AF hardware places some restrictions on the positions and sizes
that are possible for these settings.

The nXStart and nXStop values must be set on 4-pixel boundaries, e.g., 4, 8,
12, etc.

The nYStart and nYStop values are specified in terms of pixels For instance, a
PAL video field has a vertical resolution of 768 pixels, and an NTSC video field
has a vertical resolution of 480 pixels.

The nYStart video window Y start position is restricted to values from 0 to 254,
i.e. roughly the top half of the video field.

The nYStop video window Y stop position may take on any values up to the
size of the available video field, i.e., up to 767 for PAL video and up to 479 for
NTSC video signals.

See Also OI_SetVideoWindow, OI_GetAFFitted, OI_GetPCBStatus

 Version 3.1.3 OASIS4I DLL Manual PAGE 196

Filter Changer Functions
Version 2.0 of the OASIS DLL introduces a new filter changer component. This component
configures the F-Axis (the 4th axis) of the controller for filter changer operation.

From Version 2.04 onwards, the optional 5th axis provided by the OASIS-XA1 module may be
used as a secondary filter changer. If the OASIS-XA1 module is fitted, then filter commands
such as OI_MoveToFilter are routed to either of the two available filter axes, F or T. The
OI_SelectFilterChanger function is used to set the currently active filter changer.

A filter changer is essentially a number of defined positions corresponding to each filter in the
filter changer. A popular configuration for a filter changer is a wheel consisting of a number of
equally spaced filters. A given filter is selected buy rotating through the appropriate angle
between the current position and the new position. Also, the filter wheel usually has a home
switch fitted, allowing the controller to automatically orient itself to a know position.

The OASIS DLL’s filter changer component manages the setup and operation of such filter
changers, allowing you to specify the number of filters, automatically initialise the filter changer
based on the home switch or limit limits switches (for linear rather than rotating filter changers),
and move to filters according to filter indices rather than axes positions.

To define a filter changer:

1. Set the number filters in your filter changer, using a call to OI_SetFilterCount;

2. Set the offset giving the distance in microsteps between the filter home position and the
first filter, using OI_SetFilterHomeOffset;

3. Initialise the filter changer, using OI_InitFilterChanger.

Once you have defined the filter changer, you may use the OI_MoveToFilter function to move
to filter positions.

The OASIS DLL’s filter changer component also supports the Leica Microsysetemts’ DMR
automated microscope fluorescence module. See the following table for the supported
functions for the OASIS controller and the Leica Microsystems DMR microscope.

 OASIS Leica DMR

Supported
Functions

OI_SetFilterCount

OI_GetFilterCount

OI_DeleteFilter

OI_MoveToFilter

OI_GetFilterPosition

OI_InitFilterChanger

OI_SetFilterHomeOffset

OI_GetFilterHomeOffset

OI_WaitForStoppedFilter

OI_GetFilterCount

OI_MoveToFilter

OI_GetFilterPosition

OI_GetFilterName

OI_GetFilterDescription

OI_SetShutter

OI_GetShutter

OASIS4I DLL Manual Version 3.1.3 PAGE 197

OI_SetFilterName

OI_GetFilterName

OI_SetFilterDescription

OI_GetFilterDescription

OI_ReadFilterHomeInfo

OI_ReadFilterChangerInfo

OI_SetFilterOffset

OI_GetFilterOffset

OI_SetFilterLocation

OI_ClearFilterHomeInfo

Syntax OI_API OI_ClearFilterHomeInfo(void)

Description Clears the home switch sensor values.

Parameters None.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_ClearFilterHomeInfo function clears the internal flag indicating the
home switch has been sensed.

Note the flag will be reset automatically whenever the controller senses the
home switch signal.

See Also OI_ReadFilterHomeInfo

OI_DeleteFilter

Syntax OI_API OI_DeleteFilter(int nPosition)

Description Removes the specified filter from the list of filter positions.

Parameters nPosition The one based index of the filter to remove.

Return OI_OK if successful.

 Version 3.1.3 OASIS4I DLL Manual PAGE 198

Value
If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_DeleteFilter function provides a simple method to delete a given filter
from the list of currently defined filters. The indicated filter is removed, causing
any filters in the list after it to be moved up one index.

After a call to OI_DeleteFilter, the filter count will be reduced by one.

See Also OI_SetJoystickEnabled

OI_GetFilterChanger

Syntax OI_API OI_GetFilterChanger(int* pnChanger)

Description Retrieves the active filter changer.

Parameters pnChanger Pointer to receive the zero-based index of the
currently active filter changer.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments If the OASIS-XA1 module is fitted, the OASIS system is considered to have 2
filter changers, one using the 4th axis and the other using the 5th axis. The
OI_GetFilterChanger functions returns which filter is active, i.e., which axis is
the current target for filter control commands.

See Also OI_SetFilterChanger, OI_GetFilterChangerCount

OI_GetFilterChangerCount

Syntax OI_API OI_GetFilterChangerCount(int* pnChangers)

Description Retrieves the number of filter changers available.

Parameters pnChangers Pointer to receive the value of the number of filter
changes fitted.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments For the OASIS controller, the number of filter changes is dependant on whether

OASIS4I DLL Manual Version 3.1.3 PAGE 199

the OASIS-XA1 module is fitted. If fitted, this module allows an extra axis for
filter change control, bringing the total to two. If not fitted, the OASIS card’s 4th
axis is used as a single filter changer device.

See Also OI_GetFilterChanger, OI_SetFilterChanger

OI_GetFilterCount

Syntax OI_API OI_GetFilterCount(int *pnFilters)

Description Retrieves the current number of filter positions in the filter changer.

Parameters pnFilters The returned number of filters.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments See the OI_SetFilterCount function for more information about the filter count.

See Also OI_SetFilterCount

OI_GetFilterDescription

Syntax OI_API OI_GetFilterDescription(int nPosition, LPSTR szBuffer, int
nBufferLen)

Description Retrieves the current description for a given filter position.

Parameters nPosition The one-based filter position.

szBuffer The destination text buffer.

nBufferLen The length of the destination buffer specified in the
szBuffer parameter.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments See the OI_SetFilterDescription function for more information about filter
descriptions.

See Also OI_SetFilterDescription, OI_SetFilterName, OI_GetFilterName

 Version 3.1.3 OASIS4I DLL Manual PAGE 200

OI_GetFilterHomeOffset

Syntax OI_API OI_GetFilterHomeOffset(double *pdOffset)

Description Retrieves the current offset, in calibrated units, between the home position and
the first filter.

Parameters pdOffset The returned joystick control status for the X axis.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments See the OI_SetFilterHomeOffset function for more information about the filter
home offset.

See Also OI_SetFilterHomeOffset

OI_GetFilterName

Syntax OI_API OI_GetFilterName(int nPosition, LPSTR szBuffer, int nBufferLen)

Description Retrieves the current name for a given filter position.

Parameters nPosition The one-based filter position.

szBuffer The destination text buffer.

nBufferLen The length of the destination buffer specified in the
szBuffer parameter.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments See the OI_SetFilterName function for more information about filter names and
descriptions.

See Also OI_SetFilterName, OI_SetFilterDescription, OI_GetFilterDescription

OI_GetFilterOffset

Syntax OI_API OI_GetFilterOffset(int nPosition, double *pdOffset)

OASIS4I DLL Manual Version 3.1.3 PAGE 201

Description Retrieves the offset from the home position to a given filter’s position.

Parameters nPosition The one-based filter position.

dOffset The distance, in calibrated units, from the filter home
position to the filter position.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_GetFilterOffset function returns the offset, in calibrated units, from the
home position to a given filter position.

Note that after the filter changer has been initialised using a call to
OI_InitFilterChanger, the home position will be defined as a calibrated position
of 0.

See Also OI_SetFilterOffset, OI_InitFilterChanger, OI_SetFilterHomeOffset

OI_GetFilterPosition

Syntax OI_API OI_GetFilterPosition(int *pnPosition)

Description Retrieves the currently selected filter position index.

Parameters pnPosition The returned one-based filter position index.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments See the OI_MoveToFilter function for more information about filter positions.

See Also OI_MoveToFilter

OI_GetFilterTimeout

Syntax OI_API OI_GetFilterTimeout(LPDWORD lpdwMSecs)

Description Retrieves the current filter changer timeout duration.

Parameters lpdwMSecs Pointer to receive the current filter changer timeout,
in milliseconds.

 Version 3.1.3 OASIS4I DLL Manual PAGE 202

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments When filter changer operations that use a wait loop take more time than the
timeout duration, the function returns with an error which includes the
OI_TIMEOUT bit being set.

The OI_GetFilterTimeout function allows you to find out how long these
functions currently allow before a timeout occurs.

See Also OI_SetFilterTimeout

OI_GetAvailableShutterCount

Syntax OI_API OI_GetAvailableShutterCount(int * pnTotalSupported)

Description Retrieves the maximum number of available shutters for the current
configuration.

Parameters pnTotalSupported The returned count of available shutters.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The number of available shutters is based on the configuration. For instance, a
single OASIS-blue controller supports 2 shutters, while an OASIS-4i in
combination with the OI-SC4 shutter controller supports up to 4. This function
returns the maximum number of shutters for the current configuration.

See Also OI_SetShutter, OI_GetShutter

OI_GetShutter

Syntax OI_API OI_GetShutter(int *pnPosition, int nShutter)

Description Retrieves the current status of a shutter.

Parameters pnPosition The returned position value.

nShutter The shutter to be read.

Return
Value

OI_OK if successful.

OASIS4I DLL Manual Version 3.1.3 PAGE 203

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments See the OI_SetShutter function for more information about shutter control.

See Also OI_SetShutter

OI_GetShutterEx

Syntax OI_API OI_GetShutterEx(LPWORD pwRegister, LPSHUTTERINFO
lpsiShutters, int* pnShutterCount)

Description Retrieves the current status of a shutter.

Parameters pwRegister Returns the shutter control register value. Bit 3 will
be set to 1 if the High Voltage for channel 1 is
enabled.

lpsiShutters Pointer to an array of SHUTTERINFO structs
describing the shutter information.

pnShutterCount Returns the number of available shutter channels.

Compatibility Available only on OASIS-blue controller.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_GetShutterEx returns extended shutter control information for the
OASIS-blue shutter controller channels.

The shutter control action consists of a high voltage pulse followed by a lower
holding voltage that is sustained either indefinitely or for a timed duration.

The SHUTTERINFO structure returns information regarding the currently
configured pulse duration as well as a readout of the current timer values for a
timed shutter operation that may be currently underway. The following table
provides the details for the SHUTTERINFO structure:

SHUTTERINFO
Member

Meaning

wDurationHV Indicates the High Voltage pulse duration (20-100
msec)

wTimerHV Indicates the current High Voltage timer value
(20-100 msec)

wDurationLV Indicates the Low (holding) Voltage duration (0 to
65535 msec)

 Version 3.1.3 OASIS4I DLL Manual PAGE 204

wTimerLV Indicates the current Low (holding) Voltage timer
value (0 to 65535 msec)

Example:

// Simple example to see if any shutter channel is currently open
BOOL IsAnyShutterOpen()
{
 WORD wRegister;
 SHUTTERINFO si[2];
 int iShutters;

 // Read shutter status
 OI_GetShutterEx(&wRegister, si, &iShutters);

 // if either of the low voltage timers are > 0, a shutter is open
 return ((si[0].wTimerLV>0) || (si[1].wTimerLV>0));
}

See the OI_SetShutterEx function for more information about shutter control
using the OASIS-blue controller.

See Also OI_SetShutterEx

OI_API OI_GetShutterEx(LPWORD pwRegister, LPSHUTTERINFO lpsiShutters, int*
pnShutterCount);

OI_GetShutterMulti

Syntax OI_API OI_GetShutter(int *pnStates)

Description Retrieves the current status of a shutter.

Parameters pnStates The returned position values.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_GetShutterShutter function returns the status of all shutters in the
pnStates parameter. Bit 0 will be set if shutter #1 is open, Bit 1 will be set if
shutter #2 is open, and so on.

You may use the SHUTTER defines (i.e., SHUTTER1, SHUTTER2,
SHUTTER3, SHUTTER4) to test each bit using a bitwise AND with the returned

OASIS4I DLL Manual Version 3.1.3 PAGE 205

pnStates value.

See Also OI_SetShutterMulti

OI_InitFilterChanger

Syntax OI_API OI_InitFilterChanger(int nMethod, double dUnitsPerRev)

Description Initialises the filter wheel either by a home-switch method, a limit switch method,
or a manual method.

Parameters nMethod The method to use for initialisation.

dUnitsPerRev The number of calibrated units per full filter changer
revolution or travel. Note this value may be different
the pitch of the axis.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The filter changer functions require three values in order to function. These
values are:

1. The number of discreet filter positions;

2. The number of steps per full filter changer revolution;

3. The offset to the first filter.

The first value is set using the OI_SetFilterCount function, and the third value
is set using the OI_SetFilterHomeOffset function. The OI_InitFilterChanger
is used to set the second value, i.e., the number of microsteps per full filter
changer revolution.

This can be accomplished by one of three methods, as specified by the
nMethod parameter.

nMethod Value Meaning

OI_FILTER_INIT_HOME The filter changer device has a home
switch. This is typical for rotating filter
wheels. This method causes the filter
wheel to be rotated through 2 home switch
cycles in order to measure the microsteps
per revolution value.

 Version 3.1.3 OASIS4I DLL Manual PAGE 206

OI_FILTER_INIT_LIMITS The filter changer device has limit
switches. This method supports a linear
filter changer with limit switches at the
negative and positive limits of travel. This
method causes the filter changer to travel
to each end to find the limit switches and
calculates the distance between the limits
as the valid range of travel.

OI_FILTER_INIT_USER This method allows the value of the steps
per revolution to be specified by the
dUnitsPerRev parameter.

Once the steps per revolution value is obtained, the OI_InitFilterChanger
function automatically recalculates the offsets to each filter position based on
the current values for the home switch offset to the first filter and the number of
filter positions.

See Also OI_SetFilterHomeOffset, OI_SetFilterCount

OI_MoveToFilter

Syntax OI_API OI_MoveToFilter(int nPosition, int nWait)

Description Moves the filter changer to the indicated filter position.

Parameters nPosition The one-based index of the filter to move to.

nWait A non-zero nWait parameter indicates the function
should wait until the position is reached prior to
returning.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_MoveToFilter command causes the filter control axis to move to the
location corresponding to the indicated filter position index.

See Also OI_SetFilterCount, OI_InitFilterChanger, OI_SetFilterHomeOffset

OI_ReadFilterChangerInfo

Syntax OI_API OI_ReadFilterChangerInfo(double *pdUnitsPerRev, double *
pdFilterSpacing)

OASIS4I DLL Manual Version 3.1.3 PAGE 207

Description Retrieves the current definition values of the filter wheel steps per revolution
and filter spacing.

Parameters pdUnitsPerRev The current value for calibrated units per filter
revolution.

pdFilterSpacing The calculated distance between each filter, in
calibrated units.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments When the filter changer is initialised, the calibrated distance per revolution is
measured (or specified, depending of the type of initialisation). This value is
used in conjunction with the current number of filters to calculate the spacing
between filters.

The OI_ReadFilterChangerInfo allows you to retrieve the current values for
these parameters. Use the OI_GetFilterCount to get the current number of
filters.

See Also OI_GetFilterCount, OI_SetFilterCount, OI_InitFilterChanger

OI_ReadFilterHomeInfo

Syntax OI_API OI_ReadFilterHomeInfo(LPBOOL lpbHomeFound, double *
pdHomeLeft, double *pdHomeRight)

Description Retrieves the current information regarding the home switch detection.

Parameters lpbHomeFound Flag indicating if a home switch has been detected.

pdHomeLeft The leading edge position of the home switch, in
calibrated units.

pdHomeRight The trailing edge position of the home switch, in
calibrated units.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OASIS controller hardware automatically detects whenever a home switch
has been detected. This information is used, for instance, during initialisation in
order to determine the calibrated distance per filter wheel revolution by
measuring the distance between successive home filter detections.

The OI_ReadFilterHomeInfo allows you to determine if a home filter has been

 Version 3.1.3 OASIS4I DLL Manual PAGE 208

detected as well as the positions of the leading and trailing edges of the filter
switch connection.

See Also OI_InitFilterChanger

OI_SelectFilterChanger

Syntax OI_API OI_SelectFilterChanger(int nChanger)

Description Selects the active filter changer.

Parameters nChanger The zero-based index of the filter changer to be
made active.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments When the optional OASIS-XA1 module is fitted, the OASIS system can provide
two filter changers, one on the F-axis and the other on the T-axis. Filter
commands are routed to either axis based on the currently active filter changer,
as selected by OI_SelectFilterChanger.

See Also OI_GetFilterChanger, OI_GetFilterChangerCount

OI_SetFilterCount

Syntax OI_API OI_SetFilterCount(int nFilters)

Description Sets the number of filter positions in the filter changer.

Parameters nFilters The number of filters.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments A filter changer like a filter wheel will have a fixed number of positions, one for
each filter. The OI_SetFilterCount function is used to set this value.

A call to OI_SetFilterCount will cause a re-calculation of each filter’s spacing,
based on the number of microsteps required for one full revolution of the filter
changer and the number of filters positions.

Note the maximum number of filters in a filter changer is 32 positions.

OASIS4I DLL Manual Version 3.1.3 PAGE 209

See Also OI_GetFilterCount

OI_SetFilterDescription

Syntax OI_API OI_SetFilterDescription(int nPosition, LPSTR szBuffer)

Description Retrieves the status of joystick control for the X, Y, and Z axes.

Parameters nPosition The one-based filter position.

szBuffer The text buffer containing the name to set.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments Each filter position may be assigned a name and description. The
OI_SetFilterDescription function allows you to specify an extended (up to 64
characters, including the terminating null character) string describing the filter
position.

See Also OI_GetFilterDescription, OI_SetFilterName, OI_GetFilterName

OI_SetFilterHomeOffset

Syntax OI_API OI_SetFilterHomeOffset(double dOffset)

Description Sets the offset, in calibrated units, between the home positions and the first filter
position.

Parameters dOffset The distance, in calibrated units, from the home
switch position to the first filter position..

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments To automatically set the offsets to each filter position after a home-based
initialisation, the offset from the home switch to the first filter is required.

Calling the OI_SetFilterHomeOffset causes a recalculation of the offsets to
each filter.

See the OI_InitFilterChanger function for more information about the use of
the home offset.

 Version 3.1.3 OASIS4I DLL Manual PAGE 210

See Also OI_GetFilterHomeOffset, OI_InitFilterChanger

OI_SetFilterLocation

Syntax OI_API OI_SetFilterLocation(int nPosition)

Description Sets the specified filter to the current offset.

Parameters nPosition The filter position to be set.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_SetFilterLocation function may be used to explicitly set a given filter’s
position to the current location of the filter wheel. For instance, you may adjust
the filter changer’s control axis to put the desired filter into place, then call the
OI_SetFilterLocation function to “teach” the filter changer the offset to that
filter.

See Also OI_InitFilterChanger, OI_SetFilterOffset, OI_GetFilterOffset

OI_SetFilterName

Syntax OI_API OI_SetFilterName(int nPosition, LPSTR szBuffer)

Description Sets the name of a given filter position as a short text string.

Parameters nPosition The one-based filter position.

szBuffer The text buffer containing the name to set.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments Each filter position may be assigned a name and description. The
OI_SetfilterName function allows you to specify a short (up to 16 characters,
including the terminating null character) string naming the filter position.

See Also OI_GetFilterName, OI_SetFilterDescription, OI_GetFilterDescription

OASIS4I DLL Manual Version 3.1.3 PAGE 211

OI_SetFilterOffset

Syntax OI_API OI_SetFilterOffset(int nPosition, double dOffset)

Description Sets the offset from the home position to a given filter’s position.

Parameters nPosition The one-based filter position.

dOffset The distance, in calibrated units, from the filter home
position to the filter position.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments Although normally the OI_InitFilterChanger and OI_SetFilterHomeOffset
function is used to automatically set the offsets to each filter position, you may
also use OI_SetFilterOffset to set or adjust these positions yourself.

See Also OI_GetFilterOffset, OI_InitFilterChanger, OI_SetFilterHomeOffset

OI_SetFilterTimeout

Syntax OI_API OI_SetFilterTimeout(DWORD dwMSecs)

Description Sets the timeout value for filter change operations.

Parameters dwMSecs The duration for the timeout, in milliseconds.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments When filter changer operations that use a wait loop take more time than the
timeout duration, the function returns with an error, which includes the
OI_TIMEOUT, bit being set.

The OI_SetFilterTimeout function allows you to specify how long these
functions should allow before a timeout occurs.

See Also OI_GetFilterTimeout

 Version 3.1.3 OASIS4I DLL Manual PAGE 212

OI_SetShutter

Syntax OI_API OI_SetShutter(int nPosition, int nShutter)

Description Sets the state of a shutter.

Parameters nPosition The desired shutter position, as described in the
comments.

nShutter The shutter to be set.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments A shutter may be used in conjunction with a filter changer in order to control
when light is allows to pass to the specimen. This is particularly important in
some fluorescence applications where the specimen must be protected from
excessive light exposure to prevent fading of signal.

The OI-SC4 shutter controller supports up to 4 shutters. The nShutter
parameter specifies the one-based index of the shutter is to be set. For
instance, an nShutter value of 1 indicates that shutter #1 is to be set to the
stage specified by nPosition.

The shutter position is specified according to the following values.

nPosition Value Meaning

1 Opens the shutter, allowing light to pass.

0 Closes the shutter.

See Also OI_SetShutterMulti, OI_GetShutter, OI_GetShutterMulti

OI_SetShutterEx

Syntax OI_API OI_SetShutterEx(LPBOOL pbShutters, LPWORD pwValues)

Description Sets the state of a shutter.

Parameters pbShutters Pointer to an array of shutters to be set.

pwValues Pointer to an array of shutter values.

Return Value OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Compatibility Available only on OASIS-blue controller.

OASIS4I DLL Manual Version 3.1.3 PAGE 213

Comments The OI_SetShutterEx provides extended shutter control of the on-board dual
shutter control channels of the OASIS-blue controller.

The pbShutters parameter specifies whether channels 0 and 1 are to be
affected by the pwValues parameter.

Example:

void MyShutterFunc()
{

BOOL bShutters[2] ;
WORD wValues[2];

// indicate that we want to set both channels
bShutters[0] = TRUE;
bShutters[1] = TRUE:

// shutter channel one will open for 300 msec
wValues[0] = 300;

// shutter channel two will open indefinitely
wValues[1] = OI_SHUTTER_OPEN;

}

The shutter control values are described in the following table:

Shutter Value Meaning

0 or
OI_SHUTTER_CLOSE

Closes the shutter.

1 to 65534 Open for specified time, in milliseconds

65535 or
OI_SHUTTER_OPEN

Opens the shutter, leaving open indefinitely,
until closed by a subsequent command.

See Also OI_SetShutterMulti, OI_GetShutter, OI_GetShutterMulti

OI_SetShutterMulti

Syntax OI_API OI_SetShutterMulti(int nStates, int nStateMask)

Description Sets the state of a shutter.

Parameters nStates A combination desired shutter positions, as
described in the comments.

nStateMask A mask defining which bits of the nStates parameter
are valid.

 Version 3.1.3 OASIS4I DLL Manual PAGE 214

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI-SC4 shutter controller supports up to 4 shutters. The nStates
parameter specifies the desired position of each shutter, using a bit-field. For
instance, Bit 0 is used to set shutter #1, Bit 1 is used to set shutter #2 and so
on.

You may use the SHUTTER #define’s to indicate the individual shutters, e.g.,
SHUTTER1, SHUTTER2, SHUTTER3, SHUTTER4.

The nStateMask is used to indicate which portions of the nStates bitfield are
valid. For instance, setting nStateMask to a value of (SHUTTER1 |
SHUTTER3) indicates that only shutters 1 and 3 are to be affected by the
corresponding bits in the nStates bitfield.

The shutter positions in the nStates bitfield are specified according to the
following values.

nPosition Value Meaning

1 Opens the shutter, allowing light to pass.

0 Closes the shutter.

See Also OI_SetShutter, OI_GetShutter, OI_GetShutterMulti

OI_WaitForStoppedFilter

Syntax OI_API OI_WaitForStoppedFilter(void)

Description Waits until the filter changer control axis stops moving.

Parameters None.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_WaitForStoppedFilter function may be used to ensure the filter has
reached a given position after an OI_MoveToFilter function call. Note that you
may also specify a wait when calling OI_MoveToFilter.

See Also OI_MoveToFilter

OASIS4I DLL Manual Version 3.1.3 PAGE 215

Hardware Joystick and Trackball
Functions

Manual control of automated axes may be achieved using either an analog joystick or a
trackball (or other serial device). Several functions address enabling/disabling the use of the
devices via software control, as well as interrogating the status of trackball button presses.

OI_ClearTrackballStatus

Syntax OI_API OI_ClearTrackballStatus(WORD wMask)

Description Clears trackball button pressed and released flags.

Parameters wMask A mask indicating which flags are to be cleared, as
described in the comments section below.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments Whenever a trackball button pressed or released flag has been set by the
controller, it will remain set until cleared by the OI_ClearTrackballStatus
function.

The flags to be cleared are controlled by the wMask parameter, which should
be a bitwise OR of the pressed and released flag values as defined in the
comments of the OI_ReadTrackballStatus function.

For instance, to clear only the button 1 pressed and released flags, use the
following:

OI_ClearTrackballStatus(OI_BUTTON1_PRESSED
 | OI_BUTTON1_RELEASED);

OI_ClearTrackballStatus may be used to clear all button flags by passing a
value of OI_CLEAR_ALL_BUTTONS as the wMask parameter.

See Also OI_SetJoystickEnabled

OI_GetJoystickEnabled

Syntax OI_API OI_GetJoystickEnabled(BOOL* pbXEnabled, BOOL* pbYEnabled,
BOOL* pbZEnabled)

 Version 3.1.3 OASIS4I DLL Manual PAGE 216

Description Retrieves the status of joystick control for the X, Y, and Z axes.

Parameters pbXEnabled The returned joystick control status for the X axis.

pbYEnabled The returned joystick control status for the Y axis.

pbZEnabled The returned joystick control status for the Z axis.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments See the OI_SetJoystickEnabled function for more information about hardware
joystick control.

See Also OI_SetJoystickEnabled

OI_GetTrackballControl

Syntax OI_API OI_GetTrackballControl(LPWORD pwEnable)

Description Retrieves the current settings for default trackball button action enabling.

Parameters pwEnable The returned trackball button control WORD.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_GetTrackballControl function retrieves the currently defined trackball
button actions. The pwEnable word will be a bitwise OR of the button flags
indicating which buttons are to perform the default action, as defined in the
OI_SetTrackballControl function description.

See Also OI_SetTrackballControl

OI_GetTrackballEnabled

Syntax OI_API OI_GetTrackballControl(BOOL* pbEnabled)

Description Retrieves the current trackball enabled status.

Parameters pwEnabled The returned trackball control status.

OASIS4I DLL Manual Version 3.1.3 PAGE 217

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_GetTrackballEnabled function retrieves the status of trackball control
inputs. The pbEnabled word will be TRUE if trackball inputs are processed,
FALSE if the trackball inputs are disabled.

See Also OI_SetTrackballEnabled

OI_ReadTrackballStatus

Syntax OI_API OI_ReadTrackballStatus(LPWORD pwStatus)

Description Retrieves the status of the trackball input.

Parameters pwStatus The return status indicating the pressed and
released flags for each button.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OASIS controller maintains a “pressed” and “released” flag for each
trackball button. These flags are set whenever the corresponding trackball
action takes placed.

For instance, if the button has not been pressed, then both the pressed and
released flags will be 0. Once the button is pressed, but before it is released,
the pressed flag will be 1 while the released flag remains 0. Once the button is
released, both pressed and released flags will be 1.

The pressed and released flags remain set until they cleared using
OI_ClearTrackballStatus.

The test the returned status WORD, use the following values:

Value Meaning

OI_BUTTON1_PRESSED Button 1 (typically top-left) has been
pressed.

OI_BUTTON1_RELEASED Button 1 has been released.

OI_BUTTON2_PRESSED Button 2 (typically top-right) has been
pressed.

OI_BUTTON2_RELEASED Button 2 has been released.

 Version 3.1.3 OASIS4I DLL Manual PAGE 218

OI_BUTTON3_PRESSED Button 3 (typically bottom-left) has been
pressed.

OI_BUTTON3_RELEASED Button 3 has been released.

OI_BUTTON4_PRESSED Button 4 (typically bottom-right) has been
pressed.

OI_BUTTON4_RELEASED Button 4 has been released.

The following code gives an example of testing for a button 3 press:

void CheckForButton3()
{

WORD wStatus;

// read the current status
OI_ReadTrackballStatus(&wStatus);

// check to see if the button 3 pressed flag is on
if(wStatus & OI_BUTTON3_PRESSED)
{
 // do your button 3 action here…

 // clear the button 3 flag
 OI_ClearTrackballStatus(OI_BUTTON3_PRESSED);

}

}

See Also OI_ClearTrackballStatus, OI_SetTrackballControl

OI_SetJoystickEnabled

Syntax OI_API OI_SetJoystickEnabled(BOOL bXEnabled, BOOL bYEnabled,
BOOL bZEnabled)

Description Specifies which axes are enabled for joystick control.

Parameters bXEnabled Enables or disables joystick control of the X axis.

bYEnabled Enables or disables joystick control of the Y axis.

bZEnabled Enables or disables joystick control of the Z axis.

OASIS4I DLL Manual Version 3.1.3 PAGE 219

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments A hardware joystick may be fitted allowing X, Y, and/or Z control inputs. The
OI_SetJoystickEnabled function is used to set which axes are enabled for
joystick control.

See Also OI_GetJoystickEnabled

OI_SetTrackballControl

Syntax OI_API OI_SetTrackballControl(WORD wEnable)

Description Enables default handling of trackball button presses.

Parameters wEnable Enabling WORD for trackball buttons.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments By default, the controller configures the trackball buttons for the following
functions:

Button Action

Top-left (button 1) Enable / disable trackball control of XY stage

Top-right (button 2) Enable / disable trackball control of Z focus

Bottom-left (button 3) Perform autofocus using current settings

Bottom-right (button 4) Cycle through 3 pre-defined autofocus range and
speed settings. (These settings are configured in
the OASIS flash memory.)

An application may wish to take over the use of some or all of the buttons for
custom tasks. The OI_SetTrackballControl function enables / disables the
default trackball actions. A mask WORD given by the wMask parameter
indicates which buttons should perform the default processing. The mask is
assembled using a bitwise OR from the following button identifiers:

Value Action

OI_BUTTON1 Button 1, typically top-left

 Version 3.1.3 OASIS4I DLL Manual PAGE 220

OI_BUTTON2 Button 2, typically top-right

OI_BUTTON3 Button 3, typically bottom-left

OI_BUTTON4 Button 4, typically bottom-right

For instance, an application may wish to keep the top two buttons for the default
actions of XY stage and Z focus movement enabling, while using the bottom
two buttons for custom actions. In this case only buttons 1 and 2 should
perform the default actions, so an application would set the trackball control to
the following:

OI_SetTrackballControl(OI_BUTTON1 | OI_BUTTON2);

This indicates that the buttons 3 and 4 should not be processed for default
actions (usually autofocus). The application may then trap the button pressed
and/or released flags using the OI_ReadTrackballStatus function.

See Also OI_GetTrackballControl, OI_ReadTrackballStatus

OI_SetTrackballEnabled

Syntax OI_API OI_SetTrackballEnabled(BOOL bEnabled)

Description Enables and disables the function of the trackball.

Parameters bEnabled Enables or disables the trackball.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments A trackball may be fitted allowing X, Y, and/or Z control inputs. The
OI_SetTrackballEnabled function is used to enable and disable all trackball
control functions.

See Also OI_GetTrackballEnabled

Timeouts
Several functions use loops internally to wait for acknowledgement by the OASIS hardware or
to poll the system waiting for specific conditions, such as the stage to stop moving, a limit

OASIS4I DLL Manual Version 3.1.3 PAGE 221

switch to be found, or an automatic focus operation to complete. Examples of functions where
this type of polling is used are:

 OI_WaitForStoppedXYZ

 OI_WaitForStoppedF

 OI_WaitForAutoFocus

 OI_ReadFocusScore

 OI_ReadVideoResults

In some instance, these operations may take longer than expected to finish, and in extreme
cases, the automation system may be waiting for a physical situation to occur that may not be
possible. For instance, an attempt to read video results from the OASIS-AF module when
video is not available causes the system to poll the video input searching for video
synchronization.

To protect against these operations leading to infinite polling loops, the OASIS DLL uses
timeout. In essence, the logic of the polling functions is to check for the desired conditions for
as long as the timeout period specifies. If the desired condition is not reached in the specified
timeout period, the function returns with an OI_TIMEOUT error code.

OI_GetAutoFocusTimeout

Syntax OI_API OI_GetAutoFocusTimeout(LPDWORD lpdwMSecs)

Description Retrieves the current timeout value for automatic focus operation.

Parameters lpdwMSecs The returned AutoFocus timeout, in milliseconds.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The AutoFocus timeout is used in the OI_WaitForAutoFocus function.

See Also OI_WaitForAutoFocus

OI_GetMoveTimeout

Syntax OI_API OI_GetMoveTimeout(LPDWORD lpdwMSecs)

Description Retrieves the current timeout value for X,Y,Z, and F axis movements.

Parameters lpdwMSecs The returned move timeout, in milliseconds.

 Version 3.1.3 OASIS4I DLL Manual PAGE 222

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The move timeout is used in the OI_WaitForStoppedXYZ and
OI_WaitForStoppedF functions.

See Also OI_WaitForStoppedXYZ, OI_WaitForStoppedF

OI_GetVideoTimeout

Syntax OI_API OI_GetVideoTimeout(LPDWORD lpdwMSecs)

Description Retrieves the current timeout value used in video measurement functions such
as reading the focus score and detected area and maximum chord length.

Parameters lpdwMSecs The returned video timeout, in milliseconds.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The video timeout is used in the OI_ReadFocusScore and
OI_ReadVideoResults functions.

See Also OI_ReadFocusScore, OI_ReadVideoResults

OI_SetAutoFocusTimeout

Syntax OI_API OI_SetAutoFocusTimeout(DWORD dwMSecs)

Description Sets the timeout value for automatic focus operation.

Parameters dwMSecs The desired AutoFocus timeout, in milliseconds.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The AutoFocus timeout is used in the OI_WaitForAutoFocus function.

See Also OI_WaitForAutoFocus

OASIS4I DLL Manual Version 3.1.3 PAGE 223

OI_SetMoveTimeout

Syntax OI_API OI_SetMoveTimeout(DWORD dwMSecs)

Description Retrieves the current timeout value for X,Y,Z, and F axis movements.

Parameters dwMSecs The desired move timeout, in milliseconds.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The move timeout is used in the OI_WaitForStoppedXYZ and
OI_WaitForStoppedF functions.

See Also OI_WaitForStoppedXYZ, OI_WaitForStoppedF

OI_SetVideoTimeout

Syntax OI_API OI_SetVideoTimeout(DWORD dwMSecs)

Description Retrieves the current timeout value used in video measurement functions such
as reading the focus score and detected area and maximum chord length.

Parameters dwMSecs The desired video timeout, in milliseconds.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The video timeout is used in the OI_ReadFocusScore and
OI_ReadVideoResults functions.

See Also OI_ReadFocusScore, OI_ReadVideoResults

 Version 3.1.3 OASIS4I DLL Manual PAGE 224

File I/O and Settings

OI_LoadPositions

Syntax OI_API OI_LoadPositions (LPCTSTR sFile)

Description Loads the OASIS position and limit data from the specified file.

Parameters sFile The name of the file from which the positions are to
be loaded.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_LoadPositions function restores the OASIS position and limit
information for each axis from a text file. The file is structured like a standard
Windows INI file.

If you pass an empty string in the sFile parameter, the settings will be loaded
from the Windows Registry.

The current position of each axis is defined to be the value read from the file.
For instance, if an X position value of 1234.5 is read from the specified file, then
after the call to OI_LoadPositions, the current X axis position will be set to
1234.5.

The positions of the Negative and Positive User Limits are also read and set
from the values found in the file.

To save the positions, use the OI_SavePositions function.

See Also OI_SavePositions, OI_LoadSettings, OI_SaveSettings

OI_LoadSettings

Syntax OI_API OI_LoadSettings(LPCTSTR sFile)

Description Loads the OASIS settings from the specified file.

Parameters sFile The name of the file from which the settings are to
be loaded.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the

OASIS4I DLL Manual Version 3.1.3 PAGE 225

reason for failure.

Comments The OI_LoadSettings function restores the OASIS settings from a text file.
The file is structured like a standard Windows INI file.

If you pass an empty string in the sFile parameter, the settings will be loaded
from the Windows Registry.

To save the settings, use the OI_SaveSettings function.

See Also OI_SaveSettings, OI_LoadPositions, OI_SavePositions

OI_LoadSettingsEx

Syntax OI_API OI_LoadSettingsEx(LPCTSTR sFile, int nComponent)

Description Loads the OASIS settings for a component from the specified file.

Parameters sFile The name of the file from which the settings are to
be loaded.

nComponent The component for which you want to load the
settings.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_LoadSettingsEx function restores the OASIS settings from a text file
for a specific component. The file is structured like a standard Windows INI file.

If you pass an empty string in the sFile parameter, the settings will be loaded
from the Windows Registry.

To save the settings, use the OI_SaveSettings function.

See Also OI_SaveSettings, OI_LoadPositions, OI_SavePositions

OI_SavePositions

Syntax OI_API OI_SavePositions (LPCTSTR sFile)

Description Saves the current OASIS position and limit data for each axis to the specified
file.

Parameters sFile The name of the file from which the positions are to
be loaded.

 Version 3.1.3 OASIS4I DLL Manual PAGE 226

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_SavePositions function stores the OASIS position and limit information
for each axis to a text file. The file is structured like a standard Windows INI file.

If you pass an empty string in the sFile parameter, the settings will be stored to
the Windows Registry.

The positions of the Negative and Positive User Limits are also stored in the file.

The stored position information can be restored using the OI_LoadPositions
function, we redefines the position and limit values for each axis based on the
information found in the file.

See Also OI_LoadPositions, OI_SaveSettings, OI_LoadSettings

OI_SaveSettings

Syntax OI_API OI_SaveSettings(LPCTSTR sFile)

Description Save the OASIS settings to the specified file.

Parameters sFile The name of the file to which the settings are to be
stored.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_SaveSettings function stores the OASIS settings to a text file. The file
is structured like a standard Windows INI file.

If you pass an empty string in the sFile parameter, the settings will be stored to
the Windows Registry.

To load the settings saved by OI_SaveSettings, use the OI_LoadSettings
function.

See Also OI_LoadSettings, OI_SavePositions, OI_LoadPositions

OI_SaveSettingsEx

Syntax OI_API OI_SaveSettingsEx(LPCTSTR sFile, int nComponent)

OASIS4I DLL Manual Version 3.1.3 PAGE 227

Description Save the OASIS settings for a component to the specified file.

Parameters sFile The name of the file to which the settings are to be
stored.

nComponent The component for which you want to save settings.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The OI_SaveSettingsEx function stores the OASIS settings to a text file for a
given component. The file is structured like a standard Windows INI file.

If you pass an empty string in the sFile parameter, the settings will be stored to
the Windows Registry.

To load the settings saved by OI_SaveSettingsEx, use the
OI_LoadSettingsEx function.

See Also OI_LoadSettings, OI_SavePositions, OI_LoadPositions

Error Handling

OI_GetLastError

Syntax OI_API OI_GetLastError(int* pnCmd, int* pnRetCode, char* szDesc, int
nLen)

Description Retrieves information about the last error.

Parameters pnCmd Returns the command code associated with the
error.

pnRetCode Returns the return value from the function where the
error occurred.

szDesc Returns an extended description of the error.

nLen Specifies the maximum length of the szDesc
character array.

Return
Value

This function always returns OI_OK.

 Version 3.1.3 OASIS4I DLL Manual PAGE 228

Comments All functions in the OASIS DLL use the return value to report basic error
information. The OI_GetLastError function allows you to retrieve more
detailed information regarding the error. The pnRetCode argument is the
same as the error value returned from the function where the error occurred.

Note that error information is not cleared whenever a subsequent successful
function is called.

The pnCmd argument may be useful when seeking support from Objective
Imaging regarding the nature of the error. This code corresponds to the low
level command associated with the error. This code may also be 0, indicating
that a low level command was not involved in the error.

See Also OI_EnableMsgReportDlg

OI_EnableMsgReportDlg

Syntax OI_API OI_EnableMsgReportDlg(BOOL bEnabled)

Description Enables or disables message box reporting of general exception handling.

Parameters bEnabled Flag enabling or disabling general exception
messages.

Return
Value

This function always returns OI_OK.

Comments Whenever a general exception occurs and is handled in an OASIS DLL
function, a general error message box is normally displayed. The
OI_EnableMsgReportDlg function is used to programmatically enable or
disable the display of these message dialogs.

See Also OI_GetLastError

OASIS4I DLL Manual Version 3.1.3 PAGE 229

Microns / Step Conversion

OI_MicronsToAbsoluteX

OI_MicronsToAbsoluteY

OI_MicronsToAbsoluteZ

OI_MicronsToAbsoluteF

Syntax OI_API OI_MicronsToAbsoluteX(double dMicronVal, LPDWORD
lpdwSteps)

OI_API OI_MicronsToAbsoluteY(double dMicronVal, LPDWORD
lpdwSteps)

OI_API OI_MicronsToAbsoluteZ(double dMicronVal, LPDWORD
lpdwSteps)

OI_API OI_MicronsToAbsoluteF(double dMicronVal, LPDWORD
lpdwSteps)

Description Converts a given axis position in microns into the absolute internal microstep
counter value.

Parameters dMicronVal The position value, in microns, to be converted.

lpdwSteps The returned absolute coordinate, in microsteps.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The current calibrated microstep size is used for these conversions. This
calibration depends on an accurate setting of the microstep size using either the
OI_SetAxisStepSize function or the OI_SetPitchXY function (for motorised
stages).

See Also OI_SetAxisStepSize, OI_SetPitchXY, OI_MicronsToStepsX,
OI_MicronsToStepY, OI_MicronsToStepsZ, OI_MicronsToStepsZ

 Version 3.1.3 OASIS4I DLL Manual PAGE 230

OI_MicronsToStepsX

OI_MicronsToStepsY

OI_MicronsToStepsZ

OI_MicronsToStepsF

Syntax OI_API OI_MicronsToStepsX(double dMicronVal, long* lpdwSteps)

OI_API OI_MicronsToStepsY(double dMicronVal, long* lpdwSteps)

OI_API OI_MicronsToStepsZ(double dMicronVal, long* lpdwSteps)

OI_API OI_MicronsToStepsF(double dMicronVal, long* lpdwSteps)

Description Converts a given micron distance into the corresponding microstep distance.

Parameters dMicronVal The distance, in microns, to be converted.

lpdwSteps The returned distance in microsteps.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The current calibrated microstep size is used for these conversions. This
calibration depends on an accurate setting of the microstep size using either the
OI_SetAxisStepSize function or the OI_SetPitchXY function (for motorised
stages).

See Also OI_SetAxisStepSize, OI_SetPitchXY, OI_MicronsToAbsoluteX,
OI_MicronsToAbsoluteY, OI_MicronsToAbsoluteZ,
OI_MicronsToAbsoluteF

OASIS4I DLL Manual Version 3.1.3 PAGE 231

OI_StepsToMicronsX

OI_StepsToMicronsY

OI_StepsToMicronsZ

OI_StepsToMicronsF

Syntax OI_API OI_StepsToMicronsX(long lSteps, double* pdMicrons)

OI_API OI_StepsToMicronsY(long lSteps, double* pdMicrons)

OI_API OI_StepsToMicronsZ(long lSteps, double* pdMicrons)

OI_API OI_StepsToMicronsF(long lSteps, double* pdMicrons)

Description Converts a given micron distance into the corresponding microstep distance.

Parameters lSteps The distance, in microsteps, to be converted.

pdMicrons The returned distance in microns.

Return
Value

OI_OK if successful.

If unsuccessful, a combination of error codes may be returned to indicate the
reason for failure.

Comments The current calibrated microstep size is used for these conversions. This
calibration depends on an accurate setting of the microstep size using either the
OI_SetAxisStepSize function or the OI_SetPitchXY function (for motorised
stages).

See Also OI_SetAxisStepSize, OI_SetPitchXY, OI_MicronsToStepsX,
OI_MicronsToStepsStepsY, OI_MicronsToStepsZ, OI_MicronsToStepsF

General Purpose I/O
The OASIS controller provides a variety of hardware for general purpose input and output
functions. These are:

 Version 3.1.3 OASIS4I DLL Manual PAGE 232

Port Function Location Comments

CTRL1 TTL Input / Output Main 44-way
connector, pin 19

CTRL2 TLL Input / Output Main 44-way
connector, pin 23

Open Collector 1 General output
control, up to 12V

Main 44-way
connector, pin 37

Includes a 100 ohm
current limiting resistor.

Open Collector 2 General output
control, up to 12V,
100 mA max

Main 44-way
connector, pin 41

No current limiting
resistor.

INPUT0 General TTL-
compatible input

Connector PL4, pin 1 3.3V and 5V
compatible input

INPUT1 General TTL-
compatible input

Connector PL4, pin 3 3.3V and 5V
compatible input

INPUT2 General TTL-
compatible input

Connector PL4, pin 5 3.3V and 5V
compatible input

INPUT3 General TTL-
compatible input

Connector PL4, pin 7 3.3V and 5V
compatible input

OI_ReadInputPorts

Syntax OI_API OI_ReadInputPorts(LPBYTE lpbyVal)

Description Reads the input ports from connector PL4 on the OASIS controller.

Parameters lpbyVal Pointer to a BYTE returning the input port readings.

Return
Value

OI_OK if successful.

OASIS4I DLL Manual Version 3.1.3 PAGE 233

Comments
Connector PL4 on the OASIS controller provides four input ports. Each port is
compatible with 3.3V and 5V inputs.

The status of each input is encoded in the BYTE returned from the
OI_ReadInputPorts function:

Bit Meaning

0 INPUT0 – pin 1 of PL4 connector

1 INPUT1 – pin 3 of PL4 connector

2 INPUT2 – pin 5 of PL4 connector

3 INPUT3 – pin 7 of PL4 connector

4 – 7 Not used.

See Also OI_ReadIO, OI_WriteIO

OI_ReadIO

Syntax OI_API OI_ReadIO(LPBYTE lpbyVal)

Description Reads the status of the 2 I/O and 2 Open Collector ports.

Parameters bEnabled Flag enabling or disabling general exception
messages.

Return
Value

This function always returns OI_OK.

Comments
The status of each port is encoded in the BYTE returned from the OI_ReadIO
function:

Bit Meaning

0 Open Collector 1. A set bit means the transistor is
on.

1 Open Collector 2. A set bit means the transistor is
on.

2 CTRL1. A set bit means the TLL logic is high.

3 CTRL2. A set bit means the TTL logic is high.

4 – 7 Not used.

See Also OI_WriteIO, OI_ReadInputPorts

 Version 3.1.3 OASIS4I DLL Manual PAGE 234

OI_WriteIO

Syntax OI_API OI_WriteIO(BYTE byVal)

Description Writes to the CTRL and Open Collector ports.

Parameters byVal A BYTE value indicating the logic level for each
output.

Return
Value

This function always returns OI_OK.

Comments
The BYTE parameter uses the following bits to set the CTRL and Open
Collector values:

Bit Meaning

0 Open Collector 1. A set bit means the transistor
should be turned on.

1 Open Collector 2. A set bit means the transistor
should be turned on.

2 CTRL1. A set bit means the TLL logic should be set
to high.

3 CTRL2. A set bit means the TTL logic should be set
to high.

4 – 7 Not used.

See Also OI_ReadIO, OI_ReadInputPorts

	Getting Started
	System Requirements
	Installation
	Files in the OASIS Library Developer Kit

	Using the OASIS Software
	Moving Axes and Components
	Positional Units and Axis Calibration
	The Coordinate System
	Moving a Single Axis
	Waiting for Movement Completion
	Moving the XY Stage and Focus
	XY Stage Initialisation
	XY Stage Movement
	Driving the Stage Continuously
	Z Focus Initialisation
	OI_GetAxisMaxMove(int AxisID, LPDWORD lpdwValue)
	Z Focus Movement

	Acceleration Tables
	Selecting the Table
	Defining the Table

	Cruising Speed
	Encoder Support
	Enabling Encoder Inputs
	Reading the Microstepping Resolution

	Saving Settings
	Saving and Loading Settings
	Saving and Loading Positions

	Return Values

	Advanced Topics
	Using Multiple OASIS Controllers
	Counting the Number of Installed OASIS Controllers
	Routing Commands to a Controller
	Using General Axis Commands with Multiple Controllers
	Special Considerations When Using Multiple Controllers

	General Purpose I/O

	Function Descriptions
	Hardware Control
	OI_Close
	OI_CloseComponent
	OI_Configure
	OI_CountCards
	OI_EmergencyStopAll
	OI_EnableMotorPower
	OI_EnableMotorPowerEx
	OI_GetAFFitted
	OI_GetAHMDelay
	OI_GetAutoFocusHWMode
	OI_GetCardAxisCount
	OI_GetCardType
	OI_GetComponentStatus
	OI_GetConfiguration
	OI_GetDefaultAbortKeys
	OI_GetDefaultWaitCursorEnabled
	OI_GetDriverOpen
	OI_GetFlashCheckSum
	OI_GetHardwareMode
	OI_GetMultiAxisMode
	OI_GetSelectedCard
	OI_GetTotalAxisCount
	OI_GetUseCount
	OI_IsModuleFitted
	OI_Open
	OI_OpenComponent
	OI_ReadCardStatus
	OI_ReadPCBName
	OI_ReadPCBStatus
	OI_ReadPCBTemperature
	OI_ReadPCBType
	OI_ResetHardware
	OI_SelectCard
	OI_SetAHMDelay
	OI_SetAutoFocusHWMode
	OI_SetDefaultAbortKeys
	OI_SetDefaultWaitCursorEnabled
	OI_SetHardwareMode
	OI_SetMultiAxisMode

	Version Information
	OI_GetDriverVersion
	OI_ReadPCBID
	OI_ReadPCBVersion
	OI_ReadSerialNum

	General, Single Axis Control
	OI_ClearAxisUserLimits
	OI_DriveAxisContinuous
	OI_FlashReadAxisPitch
	OI_GetAxisBacklash
	OI_GetAxisCruise
	OI_GetAxisInitMethod
	OI_GetAxisMaxMove
	OI_GetAxisPitch
	OI_GetAxisRamp
	OI_GetAxisRange
	OI_GetAxisSense
	OI_GetAxisStepSize
	OI_GetAxisStepsPerRev
	OI_GetAxisTravel
	OI_GetAxisUserLimits
	OI_HaltAxis
	OI_LookupAxisSpeed
	OI_MoveAxis
	OI_ReadAxis
	OI_ReadAxisAtLimit
	OI_ReadAxisMoving
	OI_ReadAxisRampValue
	OI_ReadAxisStatus
	OI_SetAxisBacklash
	OI_SetAxisCruise
	OI_SetAxisEncoderEnabled
	OI_SetAxisInitMethod
	OI_SetAxisPitch
	OI_SetAxisRamp
	OI_SetAxisSense
	OI_SetAxisStepSize
	OI_SetAxisToDefaults
	OI_SetAxisTravel
	OI_SetAxisUserLimits
	OI_StepAxis
	OI_StepAxisAbs
	OI_WaitForAxisStopped

	Simultaneous Three Axis Control
	OI_DriveContinuousXYZ
	OI_HaltAllAxes
	OI_MoveToXYZ
	OI_MoveToXYZ_Auto
	OI_ReadMaxMoveXYZ
	OI_ReadXYZ
	OI_SetPitchFromFlashXYZ
	OI_SetPositionXYZ
	OI_WaitForStoppedXYZ

	XY Stage Control
	OI_ClearUserLimitsXY
	OI_DriveContinuousXY
	OI_GetBacklashXY
	OI_GetCruiseXY
	OI_GetDriveSenseXY
	OI_GetFullTravelXY
	OI_GetPitchXY
	OI_GetRampXY
	OI_GetSpeedXY
	OI_GetUserLimitGuardDistanceXY
	OI_GetUserLimitsXY
	OI_HaltXY
	OI_InitializeXY
	OI_LookupSpeedXY
	OI_MoveToXY
	OI_MoveToXY_Abs
	OI_MoveToXY_Auto
	OI_ReadLimitAlarmsXY
	OI_ReadStatusXY
	OI_ReadXY
	OI_ReadXY_Abs
	OI_SelectSpeedXY
	OI_SetCruiseXY
	OI_SetDriveSenseXY
	OI_SetOriginXY
	OI_SetPitchXY
	OI_SetPositionXY
	OI_SetRampXY
	OI_SetUserLimitGuardDistanceXY
	OI_SetUserLimitsXY
	OI_StepX
	OI_StepXY
	OI_StepY
	OI_WaitForStoppedXY

	Z / Focus Control
	OI_ClearUserLimitsZ
	OI_CloseMouseWheelForFocus
	OI_DriveContinuousZ
	OI_GetBacklashZ
	OI_GetCruiseZ
	OI_GetDriveSenseZ
	OI_GetMouseWheelPars
	OI_GetMouseWheelZ
	OI_GetRampZ
	OI_GetSpeedZ
	OI_GetUserLimitsZ
	OI_HaltZ
	OI_InitializeZ
	OI_InitializeZLimits
	OI_LookupSpeedZ
	OI_MoveToZ
	OI_MoveToZ_Abs
	OI_OpenMouseWheelForFocus
	OI_ReadLimitAlarmsZ
	OI_ReadRangeZ
	OI_ReadStatusZ
	OI_ReadSyncZ
	OI_ReadZ
	OI_ReadZ_Abs
	OI_RockZ
	OI_SelectSpeedZ
	OI_SetCruiseZ
	OI_SetDriveSenseZ
	OI_SetMouseWheelPars
	OI_SetMouseWheelZ
	OI_SetOriginZ
	OI_SetPitchZ
	OI_SetPositionZ
	OI_SetRampZ
	OI_SetUserLimitsZ
	OI_StepZ
	OI_WaitForStoppedZ

	F-Axis (4th axis) Control
	OI_ClearUserLimitsF
	OI_GetCruiseF
	OI_GetDriveSenseF
	OI_GetRampF
	OI_GetSpeedF
	OI_GetUserLimitsF
	OI_HaltF
	OI_InitializeF
	OI_InitializeFRange
	OI_LookupSpeedF
	OI_MoveToF
	OI_ReadF
	OI_ReadLimitAlarmsF
	OI_ReadRangeF
	OI_ReadStatusF
	OI_SelectSpeedF
	OI_SetCruiseF
	OI_SetDriveSenseF
	OI_SetOriginF
	OI_SetPitchF
	OI_SetPositionF
	OI_SetRampF
	OI_SetUserLimitsF
	OI_StepF
	OI_WaitForStoppedF

	T-Axis (5th axis) and S-Axis (6th axis) Control
	OI_ClearUserLimitsT
	OI_DriveContinuousT
	OI_GetCruiseT
	OI_GetDriveSenseT
	OI_GetRampT
	OI_GetSpeedT
	OI_GetUserLimitsT
	OI_HaltT
	OI_InitializeT
	OI_InitializeTRange
	OI_LookupSpeedT
	OI_MoveToT
	OI_ReadLimitAlarmsT
	OI_ReadRangeT
	OI_ReadStatusT
	OI_ReadT
	OI_SelectSpeedT
	OI_SetCruiseT
	OI_SetDriveSenseT
	OI_SetOriginT
	OI_SetPitchT
	OI_SetPositionT
	OI_SetRampT
	OI_SetUserLimitsT
	OI_StepT
	OI_WaitForStoppedT

	Encoders and Closed-loop Operation
	OI_GetAxisEncoderEnabled
	OI_GetAxisEncoderFitted
	OI_GetAxisEncoderStepSize
	OI_GetEncoderClosedLoopResponseXYZ
	OI_GetEncoderEnabledXY
	OI_GetEncoderEnabledZ
	OI_ReadEncoderModule
	OI_SetEncoderClosedLoopResponseXYZ
	OI_SetEncoderEnabledXY
	OI_SetEncoderEnabledZ
	OI_SetEncoderModule

	Automatic Focus
	OI_AutoFocus
	OI_AutoFocus_Fine
	OI_AutoFocus_Step
	OI_AutoFocusEx
	OI_GetAutoFocus
	OI_GetAutoFocusEx
	OI_GetAutoFocusThreshold
	OI_GetFineFocusSamples
	OI_ReadFocusProfile
	OI_ReadFocusScore
	OI_ReadFocusScoreEx
	OI_RequestAutoFocusStatus
	OI_SetAutoFocus
	OI_SetAutoFocusEx
	OI_SetAutoFocusThreshold
	OI_SetFineFocusSamples
	OI_WaitForAutoFocus

	Predictive Focus Functions
	OI_GetAutoPredictiveZ
	OI_GetCoincDomain
	OI_GetMultiPredictiveZ
	OI_GetPredictiveFlag
	OI_GetPredictiveZ
	OI_GetPredictiveZDomains
	OI_GetPredictiveZOffset
	OI_InvalidatePredictiveZ
	OI_SetAutoPredictiveZ
	OI_SetMultiPredictiveZ
	OI_SetPredictiveFlag
	OI_SetPredictiveZ
	OI_SetPredictiveZOffset
	OI_UpdatePredictiveZ

	Video Camera Interface Functions
	OI_GetVideoWindow
	OI_IsVideoDetected
	OI_ReadVideoData
	OI_ReadVideoResults
	OI_ReadVideoResultsEx
	OI_ReadVideoResultsXY
	OI_ReadVideoResultsXYZF
	OI_ReadVideoResultsZ
	OI_SetVideoSettings
	OI_SetVideoWindow

	Filter Changer Functions
	OI_ClearFilterHomeInfo
	OI_DeleteFilter
	OI_GetFilterChanger
	OI_GetFilterChangerCount
	OI_GetFilterCount
	OI_GetFilterDescription
	OI_GetFilterHomeOffset
	OI_GetFilterName
	OI_GetFilterOffset
	OI_GetFilterPosition
	OI_GetFilterTimeout
	OI_GetAvailableShutterCount
	OI_GetShutter
	OI_GetShutterEx
	OI_GetShutterMulti
	OI_InitFilterChanger
	OI_MoveToFilter
	OI_ReadFilterChangerInfo
	OI_ReadFilterHomeInfo
	OI_SelectFilterChanger
	OI_SetFilterCount
	OI_SetFilterDescription
	OI_SetFilterHomeOffset
	OI_SetFilterLocation
	OI_SetFilterName
	OI_SetFilterOffset
	OI_SetFilterTimeout
	OI_SetShutter
	OI_SetShutterEx
	OI_SetShutterMulti
	OI_WaitForStoppedFilter

	Hardware Joystick and Trackball Functions
	OI_ClearTrackballStatus
	OI_GetJoystickEnabled
	OI_GetTrackballControl
	OI_GetTrackballEnabled
	OI_ReadTrackballStatus
	OI_SetJoystickEnabled
	OI_SetTrackballControl
	OI_SetTrackballEnabled

	Timeouts
	OI_GetAutoFocusTimeout
	OI_GetMoveTimeout
	OI_GetVideoTimeout
	OI_SetAutoFocusTimeout
	OI_SetMoveTimeout
	OI_SetVideoTimeout

	File I/O and Settings
	OI_LoadPositions
	OI_LoadSettings
	OI_LoadSettingsEx
	OI_SavePositions
	OI_SaveSettings
	OI_SaveSettingsEx

	Error Handling
	OI_GetLastError
	OI_EnableMsgReportDlg

	Microns / Step Conversion
	OI_MicronsToAbsoluteX
	OI_MicronsToAbsoluteY
	OI_MicronsToAbsoluteZ
	OI_MicronsToAbsoluteF
	OI_MicronsToStepsX
	OI_MicronsToStepsY
	OI_MicronsToStepsZ
	OI_MicronsToStepsF
	OI_StepsToMicronsX
	OI_StepsToMicronsY
	OI_StepsToMicronsZ
	OI_StepsToMicronsF

	General Purpose I/O
	OI_ReadInputPorts
	OI_ReadIO
	OI_WriteIO

